
User Centered Systems Analysis of the
North Dakota lntermodal Management System

Douglas E. Benson

UGPTI Publication No. 114
February 1997

I

L

ABSTRACT

This paper presents the results of a user centered systems analysis of a proposed

software system, the North Dakota Intermodal Management System. The study surveyed

and evaluated several object-oriented analysis methods to select the one that best supports

user centered development. This examination determined that Jacobson's Use Case Driven

Approach best meets that criterion.

The study continued the analysis with an initial application of Jacobson's

methodology to the software. This part of the analysis included the identification of high

level use cases and the object specification of an example use case. In doing so, the paper

augmented Jacobson's methodology by introducing a priority ranking of the primary actors

in the software system and by applying user centered design principles and guidelines to the

development of a system prototype.

The paper concluded by presenting an analysis of alternative software development

environments for implementing the software. These alternatives were evaluated and

presented to the agency considering system implementation. The analysis examined the

potential functionality for each alternative and compared each alternative with the other

possible software development environments.
F

ACKNOWLEDGMENTS

The author acknowledges the assistance of Dr. Denver Tolliver of the Upper Great

Plains Transportation Institute and Norlyn Schmidt of the North Dakota Department of

Transportation. These transportation professionals provided invaluable guidance and insight

into the development of a North Dakota Intermodal Management System. Additionally, the

author would like to acknowledge the contributions made to this paper by Dr. Kendall

Nygard of the Computer Science Department at North Dakota State University,

Dr. Nygard, along with Dr. Paul Juell, Dr. D. Bruce Erickson, and Dr. Don Andersen of

North Dakota State University, made significant contributions to the computer science

aspects of the study.

ii

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGMENTS . ii

LIST OF TABLES ... vi

LIST OF FIGURES . vii

CHAPTER 1. INTRODUCTION , , . . . 1
1. 1 Introduction to the Paper . 1
1.2 Introduction to the Intermodal Management System . 3
1.3 Objectives of the North Dakota IMS 4
1.4 Preliminary Assessment of the IMS . 5

CHAPTER 2. LITERATURE REVIEW 9
2.1 Introduction . 9
2.2 Object-oriented Programming Overview 9

2.2.1 Object-oriented Concepts , , 10
2.2.2 Object-oriented Background . 11

2.3 Object-oriented Design and Analysis Methods . 15
2. 3.1 Abbott (I 983) . 16
2.3.2 Booch (1986) .. 16
2.3.3 General Object-Oriented Design (GOOD) (1986) 17
2.3.4 Hierarchical Object-Oriented Design (HOOD) (1989) 17
2.3.5 Object-Oriented Analysis and Design (OONOOD) (Coad and

Yourdon, 1991) . 18
2.3.6 OMT (1991) , , 21
2.3.7Booch(l991) , .. 24
2.3.8 Object-Oriented Software Engineering (OOSE) (Jacobson, 1992) . 25
2.3.9 Booch (1994) .. 30
2.3. 10 Other Use Case Methods and Applications , 32
2.3.11 Unified Method (Expected 1996) , , ... 34

2.4 Summary . 35
2.5 Conclusion .. 37

CHAPTER 3. IMS USER CENTERED SYSTEM ANALYSIS 39
3.1 Introduction . 39
3.2 Requirements Model .. 40

3.2.1 Actor Identification . 40
3.2.2 High Level Use Case Examples 41

Ill

3.2.3 Railroad Branchline Abandonment Use Case 44
3.3 Railroad Branchline Abandonment Expanded Use Case 45

3.3.1 Object Specification of the Railroad Branchline Abandonment
Use Case .. . 49

3.3.2 Railroad Branchline Abandonment Use Case With Objects 56
3.3.3 Object Inheritance in the Railroad Branchline Abandonment

Use Case .. . 61
3.3.4 Encapsulation in the Railroad Branchline Abandonment Use Case . 62
3.3.5 Reuse of Railroad Branchline Abandonment Objects 65

3.4 IMS User Centered Object-oriented Analysis vs Data-driven Analysis 66
3.4.1 Understanding the User 66
3.4.2 Managing a Complex System 71

3.5 Railroad Branchline Abandonment Interface Description 74

CHAPTER 4. IMS USER CENTERED PROTOTYPE 75
4.1 Introduction .. . 75
4.2 User Centered Design Context 76

4.2.1 Interface Design Background 78
4.2.2 Information Systems Background 84
4.2.3 Related IMS Activities 86

4.3 IMS Computer Use Survey 86
4.3.1 Survey Participants 87
4.3.2 Survey Participation Rate 88
4.3 .3 SECTION I. Computer Use 88
4.3.4 SECTION II. Graphical User Interfaces (GUI) 91
4.3.5 SECTION III. Information Use 92
4.3.6 SECTION IV. Intermodal Transportation 93
4.3.7 SECTION V. Comments 94
4.3.8 Survey Discussion 94

4.4 IMS Prototype Design Decisions 95
4.5 Conclusion 99

CHAPTER 5. IMS PRELIMINARY SYSTEM IMPLEMENTATION ANALYSIS .. 101
5.1 Introduction 101
5.2 Object-oriented Database Management System 102

5.2.1 Delphi : An Object-oriented Database Management System 102
5.2.2 System Overview 102
5.2.3 System Description 103
5.2.4 Database System Structure 104
5.2.5 Modeling .. . 105
5.2.6 GIS .. . 105
5.2. 7 User Interface 105
5.2.8 System Maintenance and Evolution 105

IV

1--

5.2.9 Summary .. . 106
5.3 DataBase Management Systems: Level I 106

5.3. l dBASE Database Management System 106
5.3.2 System Overview 106
5.3.3 System Description 107
5.3 .4 Database System Structure 108
5.3.5 Modeling .. . 109
5.3.6 GIS .. . 109
5.3.7 User Interface 109
5.3.8 System Maintenance and Evolution 110
5.3.9 Summary .. . 110

5.4 DataBase Management Systems: Level II 110
5.4. I Visual Basic Database Management System 110
5.4.2 System Overview 110
5.4.3 System Description 111
5.4.4 Database System Structure 112
5.4.5 Modeling .. . 112
5.4.6 GIS .. . 112
5.4.7 User Interface 113
5.4.8 System Maintenance and Evolution 113
5.4.9 Summary .. . 113
5. 5 GIS-based Systems 114
S.S.! Level I ARC/INFO System 114
5. 5. I. I System Overview 114
5.5.1.2 System Description 114
5.5.1.3 Database System Structure 115
5.5.1.4 Modeling 116
5.5.1.5 GIS 116
5.5.1.6 User Interface 116
5.5.1.7 System Maintenance and Evolution 116
5.5.1.8 Summary .. . 117
5.5.2 Level II ARC/INFO System 117

5.6 Object-oriented Software System 117
1::
l-

CHAPTER 6. CONCLUSION 121

BIBLIOGRAPHY 127

APPENDIX A. IMS BACKGROUND SURVEYS 133

APPENDIXB. IMS COMPUTER USE SURVEY 151

V

LIST OF TABLES

Table ~

I. The North Dakota Intermodal Management System Databases 6

2. The Evolution of Object-oriented Technology 13

3. A Brief Summary of the Object-oriented Methodologies Under Consideration . . . 36

4. Potential Intermodal Management System Databases 71

VI

LIST OF FIGURES

Figure ~

1. The Objectives and Process of the Study 2

2. Use Case Model Diagram Example . 28

3. Use Case Model Drives the Other Analysis and Design Models 30

4. High Level Use Cases of the Intermodal Management System 43

5. Railroad Branchline Abandonment Use Case Object Specification, Part I 51

6. Railroad Branchline Abandonment Use Case Object Specification, Part II 53

7. Example of Object Inheritance in the Railroad Branchline Abandonment Use Case

Object Specification . 64

8. High Level IMS Reuse of the Railroad Branchline Abandonment Use Case Object

Specification.. 68

9. Years of Computer Experience 88

10. Computer Hours per Week.. 89

11. Software Programs Utilized .. 90

12. Types ofUser Information.. 92

13. Intermodal Transportation Experience.. 93

t

vii

CHAPTER 1. INTRODUCTION

1.1 Introduction to the Paper

l

The work described in this paper concerns steps in the design and development of

software for transportation analysis and decision support. The software is known as the

Intermodal Management System (IMS), and it is essential that the software design of the

IMS be user centered. Within that context, the study had three primary objectives (Figure

1). The first was to survey and evaluate alternative object-oriented analysis and design

methodologies to select the one that best supports the user centered design approach. The

outcome of this effort was to select the use case approach pioneered by Ivar Jacobson

(Jacobson, 1992). The second objective was to initiate the actual application of the use case

approach to the IMS, developing high level use cases and object classes for a significant

portion of the IMS. This exercise characterized the applicability of the approach and i
illustrated many of the major issues that must be addressed in implementing the entire

system. Moreover, the paper seeks to strengthen the application process by applying user

centered design principles to an IMS prototype design. The third objective of this paper was

to survey alternative software development systems for possible IMS implementation. This

effort was done in response to the potential users of the system.

The paper begins with an introduction to the IMS. It is first explained from a

national legislative perspective and then from North Dakota's perspective (UGPTI, 1995)

by outlining the IMS objectives delineated by the North Dakota Department of

Transportation (NDDOT), the government entity considering IMS development. This is

followed by a description of the selection of object-oriented technology for this analysis.

1

IMS

User Centered
Design

Objective 1 Obiectiye 3

Select User Centered
Object-Oriented Approach

Preliminary System
Implementation Analysis

Obiec1ive 2

User Centered Object-Oriented
IMS Application

Figure 1. The Objectives and Process of the Study.

The literature review focused on selecting a user centered, object-oriented

methodology. The format of the literature review is introduced first, followed by an

overview of object-oriented technology. The chapter continues with a survey and an

examination of several major object-oriented methods and concludes by selecting a user

centered object-oriented methodology, Jacobson's use case model.

Chapter 3 initiates the application of Jacobson's use case model to the IMS. The

chapter outlines the application of the use case model at a high system level and also,

through the use of an example, in greater depth. A comparison with another analysis and

design approach is used to highlight the advantages the user centered, object-oriented

2

methodology offers. The chapter introduces the topic of interface design, an important

issue in user centered design.

Chapter 4 reviews and examines user centered design principles, applying them to

the development of an IMS prototype. The IMS prototype is part of the analysis and

design process utilized to elicit user feedback early in the process, and the use ofuser

centered design principles in the development of the IMS prototype strengthens its part of

the process. User centered design principles are presented from several viewpoints, and a

computer use survey is utilized to provide basic user information for applying these

principles. Design decisions for the IMS prototype are outlined, and the chapter concludes

with a discussion of a user centered IMS prototype.

Chapter 5 surveys alternative software development environments as requested and

reported to the NDDOT (UGPTI, 1995). This analysis was developed to present software

development alternatives to NDDOT officials and is presented as part of the user centered

design process.

Chapter 6 presents the conclusions. These detail the study' s efforts in accomplishing

the objectives of the paper, the selection of a user centered, object-oriented methodology,

the initial application of the methodology to the IMS, and the presentation of alternative

software development systems for possible IMS implementation.

1.2 Introduction to the Intermodal Management System

The Intermodal Management Software System (IMS) is a computerized

management system being considered for development by the ND DOT within the

framework provided by the Intermodal Surface Transportation Efficiency Act (ISTEA) of

3

1991. The ISTEA directed the states to monitor and enhance the performance of intermodal

transportation within their states and proposed a management system for intermodal

facilities and systems that provides for the integration and improvement of all of their

transportation systems. This requirement was relaxed in 1995. The Federal Highway

Administration (FHW A) and the Federal Transit Administration (FTA) define an intermodal

system as a transportation network for moving people and goods using various

combinations of transportation modes. The IMS will be a transportation management

system designed to meet the expectations ofISTEA by providing a computer-based system

to assist in the administration and evaluation of the state's intermodal transportation system.

The Federal Register, Vol. 58, No. 39, contains the proposed rules detailing the

minimum requirements and objectives of an IMS. As described in the Federal Register, they

are

a. Identification of intermodal facilities.

b. Identification of efficiency measures and performance standards.

c. Data collection and system monitoring.

d. System and facility performance evaluation.

e. Strategy and action identification and evaluation.

f. Implementation.

1.3 Objectives of the North Dakota IMS

The NDDOT envisions a number of objectives for the state's IMS (UGPTI, 1995).

A major goal of the system is to provide a mechanism for optimizing state highway

investment analysis to maximize the use of state highway funding. To reach that goal, the

4

collection and analysis of railroad freight data and motor carrier freight operations are

included in the IMS. The traffic shifts among different modes of transportation also must be

monitored to measure the potential impacts modal shifts have on investment decisions. To

meet that objective, the IMS will provide functionality to easily assess modal shifts. Among

the other primary goals representative of those outlined by NDDOT (UGPTI, 1995) are 1)

provide information regarding the volume handled and traffic generated from major freight

traffic facilities; 2) provide facility-specific and commodity-specific traffic data for major

traffic generators which will support improved Average Daily Traffic and Equivalent Single

Axle Loads measures; 3) provide information outlining access routes to and from airports,

grain subterminals, and other major facilities; and 4) provide truck terminal information

useful in analyzing access for large trucks to and from the National Highway System.

A major operational goal of the IMS is to integrate it with existing management

systems (UGPTI, 1995). These management systems are the traffic monitoring system and

the pavement, bridge, safety, and public transportation management systems. Integration

and coordination with these systems will complement the activities of all systems. The

NDDOT also wants the IMS to be as practical as possible and targeted toward the major

intermodal issues.

1.4 Preliminary Assessment of the IMS

A preliminary assessment of the IMS revealed that the system has the potential to be

large and complex. An evaluation of other states' efforts showed that significant projects

were in development. A presentation of California's plan outlined an extensive and elaborate

series of management systems and databases being incorporated into their IMS (Carter,

5

1993). A New Mexico IMS planning document identified several major projects as part of

the IMS development (Barton-Aschman, 1993).

The North Dakota IMS has a significant number of databases, which are listed in

Table I, and will be accessing at least one other management system, the Pavement

Management System (PMS). Potentially, the North Dakota IMS could be interacting with a

number of other systems including a GIS and several other transportation management

systems. The background surveys, in Appendix A and B, report many uses and functions for

the system. In all, the North Dakota IMS will be a large, complex system when it reaches

its full potential.

Table I. The North Dakota Intermodal Management System Databases.

IMS Database Databasi: Description

Coal Collection of Coal Handling Facilities

Airports Attributes ofNorth Dakota Airports

Transit Database of Transit Facilities

Fertilizer Record ofFertilizer Distribution Centers

Grain Elevators Characteristics of Grain Elevators

Motor Carrier Major Motor Carrier Terminal Information

Sugar Beet Sugar Beet Collection/Processing Centers

L
l

Object-oriented technology has been recommended by many software

methodologists as a good technology for developing large and complex systems (Booch,

6

1991; Graham, 1994). This paper considered those recommendations for analysis and

examined object-oriented technology within the user centered approach to development.

7

TT

CHAPTER 2. LITERA TORE REVIEW

2.1 Introduction

The objective of the literature review was to select a user centered, object-oriented

analysis and design methodology, one of the primary objectives of the study. To accomplish

that task, the literature review opens with an overview of object-oriented programming to

introduce and trace the evolution of object-oriented technology. The literature review

surveys and examines several major, object-oriented analysis and design methodologies,

including those of historical note and concludes with the selection of a user centered, object

oriented analysis and design methodology.

2.2 Object-oriented Programming Overview

Object-oriented programming is a programming methodology based upon the

representation ofreal-world entities as objects in a computer program (Entsminger, 1990).

Objects in an object-oriented programming system incorporate, or encapsulate, the

attributes and activities of the actors in a real-world system that the user is seeking to

model. Real-world systems consist of actors having characteristics and behaviors

interacting in the system corresponding to the objects in an object-oriented system. The

objects in object-oriented programming form the building blocks of a system allowing the

E
program to more closely emulate the real-world problem domain. This is contrasted with

traditional structured programming which separates the characteristics and behaviors of a

concept and delineates a more static control flow than object-oriented programming.

9

I

2.2.1 Object-oriented Concepts

The basic concept of object-oriented programming is that a collection of data and

the operations that are normally performed on that data are very closely related and should

be treated as a single entity rather than as separate things (Peterson, 1987). Several

concepts are key to developing an understanding of object-oriented programming These

key concepts are

Objects: Objects are the basic structure of object-oriented programming. An object

encapsulates data and the data operations into one construct. It models a real world

actor in a system in the sense that it contains the characteristics (data) and the

behaviors (data operations) of an actor or entity.

Data Abstraction: An abstraction represents the essential characteristics of an object

or concept without considering the underlying details. Data abstraction is a form of

abstraction where the details of the underlying algorithms are hidden (i.e., they are

an abstraction), and the type of data which those algorithms manipulate is also a

high-level concept, i.e., an abstraction (Berard, 1993). This allows a designer to

define an object by its attributes and operations apart from considering the

implementation details. Data abstraction allows objects to be treated as "black
i
,1-
,boxes" without consideration of the underlying implementation of the objects •

(Berard, 1993).

Encapsulation: Encapsulation encloses the operations and the implementation of the

data structures inside an object, thereby hiding it. The designer sees the object in

terms of its attributes and operations, not in terms of the implementation details.

With encapsulation, we can tell the object what to do, but the details of how it

works have been enclosed inside the object.

Polymorphism: Polymorphism is the capacity of a single entity (i.e., a message or an

operator) to have different, but proper, interpretations across various different types

of objects. The same method may be used regardless of the type (or form) of the

objects upon which it is used. With polymorphism, many different types of objects

can receive the same message, but correctly react to it in their own way (Berard,

1993).

Inheritance: Inheritance is a mechanism whereby objects acquire and/or inherit the

characteristics and behaviors of another object, a parent object. Objects inherit all

the attributes and characteristics of the parent object, and a hierarchy of objects can

be created from inheritance. With inheritance, all changes made to the parent object

propagate throughout the system to the child objects.

Classes: A class is an entity which is used to create instances of that type of object.

A class is the template or blueprint for creating a category of objects (Booch, 1991).

Among other things, a class describes the interface these items present to the outside

world.

Message Passing: Objects communicate by passing messages to one another.

2.2.2 Object-oriented Background

Object-oriented programming started with the development of the Simula language

in Norway in the late 1960s (Dahl and Nygaard, 1966; Berard, 1993). Table 2 provides an

outline of the evolution of object-oriented technology, starting with Simula. Simula was

11

developed to provide a comprehensive programming language that was favorable for

programming discrete event simulations. Discrete event simulations do not lend themselves

easily to programming in traditional procedural languages where the control of program

flow is functionally based. Simulation is modeled more effectively with an approach to

programming where program control flow is based upon entities or objects changing state

through the influence of other actors or objects in the system. Simula allowed program

designers to more directly reflect the natural structure of a simulation problem, a system of

objects, and interactions among the objects.

Smalltalk, an object-oriented programming language developed at the Xerox Palo

Alto Research Center for use on an experimental small personal computer called the

Dynabook, was introduced in the 1970s (Kay, 1977; Peterson, 1987). Kay (1977) describes

Smalltalk as a language allowing the programmer to deal with objects and messages among

objects to create "activities" that provide the framework of a program. Smalltalk became

the "object-oriented" language used on the Dynabook and used a windowing scheme to

program the computer.

The use of object-oriented concepts in Artificial Intelligence (AI) also began in the

1970s. The use of knowledge representations in Al using semantic networks and frames

were influenced by the object-oriented concepts of objects and classes. In turn, the complex

notions of inheritance in Al contributed to the evolution of inheritance in object-oriented

programming (Graham, 1994).

12

Table 2. The Evolution of Object-oriented Technology.

Timi: Frame Dfye!Qpments

Late 1960s First Object-Oriented Language, Simula.

1970s Introduction of Smalltalk and windowing scheme.

Object-oriented concepts appear in AI.

AI contributes to the evolution of inheritance.

1980s Extensive UI development influenced by Smalltalk.

Introduction of Ada, C++, and Object Pascal.

Object-Oriented Design, Object-Oriented Analysis appear.

Introduction of Object-Oriented Database Management Systems.

Object Management Group (OMG) formed.

1990s Emphasis on standards with many analysis and design methods.

, Booch, Rumbaugh, Coad and Yourdon among major methods.

Ivar Jacobson's Use Case Model introduced.

Unified Method expected 1996.

The 1980s brought extensive development in the User Interface (UI) area, and

Smalltalk's ideas and windowing scheme were important to these developments (Graham,

1994). The window interface, with its collection of objects on the screen, was particularly

well-suited for development with an object-oriented approach. Several conventional

languages, such as C and Pascal, were extended to incorporate object-oriented concepts and

led to the introduction of the widespread use of the object-oriented languages, C++ and

Object Pascal.

13

Object-oriented Design (OOD), Object-oriented Analysis (OORA), Object-oriented

Domain Analysis (OODA), and Object-oriented DataBase Management Systems

(OODBMS) evolved in the 1980s (Berard,1993). The earlier work in object-oriented

technology had not seriously considered design issues (Berard, 1993). Grady Booch was

among the first to formalize a design approach drawing upon the work of Russell J. Abbott,

an approach using nouns and verbs of textual language. Booch was looking for a

mechanism to incorporate software engineering into the teaching of Ada and referred to his

approach as object-oriented design (Booch, 1982). Booch and Edward Berard both

incorporated object-oriented design exercises into their Ada instruction during the 1980s. In

1986, Booch published a paper outlining a method for using some of Ada's features in an

object-oriented manner. Many others began developing approaches to object-oriented

design of which two of the more prominent, Coad/Yourdon and James Rumbaugh's OMT,

were introduced in 1991 (Coad and Yourdon, 1991; Rumbaugh et al., 1991).

Concern has shifted.to standards (Graham, 1994; Berard, 1993). The Object

Management Group (OMG), formed in 1989 with such companies as Hewlett Packard,

AT&T, SUN, and others, has sought to develop standards for object technology along with

an awareness of object technology and open systems. This shift reflects a change in

emphasis from programming to design and analysis as exhibited by the proliferation of

design and analysis methods published by the early 1990s. By 1995, two of the leading

methodologies, Booch and OMT, were attempting to merge the two technologies into a

method labeled the Unified Method (Booch and Rumbaugh, 1995). By late 1995, a draft

version of the Unified Method was available and a final version scheduled for the middle of

14

https://shifted.to

1996. With a major share of the commercial market and utilizing concepts from several

influential thinkers in the field, including Ivar Jackson, developer of the Use Case described

in Section 2.3, the Unified Method appears positioned to be the major force in object

oriented design and analysis in the late 1990s.

2.3 Object-oriented Design and Analysis Methods

This section describes several of the most influential of the object-oriented design

and analysis methods. The discussion of these major methodologies focuses on presenting a

description of their major concepts and what each has to contribute to object-oriented

technology. This discussion is presented within the framework of selecting a user centered,

object-oriented analysis and design methodology. This section includes methods that are

generally inclusive of both object-oriented analysis and object-oriented design, although it is

important to note the difference between the two processes. Object-oriented analysis has a

higher level of abstraction than object-oriented design and is the decomposition of problems

or systems into their component parts. The process of specification of user requirements

and system structure and function independent of the implementation of the system is

object-oriented analysis. The object-oriented analyst considers and comes to an

understanding of the system in terms of objects, object behavior, and system behavior. In

comparison, object-oriented design is less abstract than analysis, but more abstract than

implementing the system solution in program code. Graham (1994) states that object

oriented design methods share the following basic design steps:

1. Identify objects and their attribute and method names.

2. Establish the visibility of each object in relation to other objects.

15

3. Establish the interface of each object and exception handling.

4. Implement and test the objects.

The discussion begins with a look at an important, early contribution by Russell Abbott

(1983).

2.3.1 Abbott (1983)

Abbott (1983) presents the use of natural language to extract the objects and

methods of a system from the textual description of a problem. The nouns in the description

become the objects in the system while the verbs become the methods, behaviors, or

classification schemes associated with the objects. Nouns can be broken down into proper

and improper nouns and verbs into doing, being, and having. While not a formal method, it

is presented here briefly because of its use in subsequent methods. Many of the early

methods use Abbott's textual analysis.

2.3.2 Booch (1986)

This is the oldest of the object-oriented methods and was developed mainly as a

method for using the Ada programming language in an object-oriented style (Graham,

1994). Booch introduced the concept of"object-oriented design" to the Ada community

(Berard, 1993). The approach is based on Ada's information hiding, but does not include

important object-oriented concepts such as inheritance and polymorphism. The method

constructs data flow diagrams (DFD) of the system and identifies the bubbles and data

stores in the DFD as objects in the problem space. The system methods are derived from

the process bubbles in the DFD. This methodology presents Booch's early ideas for

16

object-oriented design. Booch's later and more complete design and analysis approaches

are described in Section 2.3.7.

2.3.3 General Object-Oriented Design (GOOD) (1986)

This method is similar to Booch's 1986 approach and uses layered data flow

diagrams to identify objects in the system. Analyses of the entities in the system becomes

the objects; the transformations of the entities in the system becomes the methods. Classes

of objects are discovered by examining the flow of data and control. Like Booch, it uses a

top-down seniority hierarchy on the objects and is closely linked to systems development

using the Ada language.

2.3.4 Hierarchical Object-Oriented Design (HOOD) (1989)

HOOD is a method similar to GOOD and was directly influenced by it (Graham,

1994). This method has two kinds of objects, passive and active (HOOD, 1989). Passive

objects may only use the services of other passive objects, whereas active objects may use

the services of any object. Objects at the highest level of abstraction are decomposed into

other objects in a top-down manner, with further decomposition of any resultant objects.

HOOD has, in effect, two hierarchies: a compositional one and a usage one. The

usage one is the network of the passive/active relationships and is similar to a network

schema. The compositional hierarchy details the top-down decomposition of objects.

The basic design step is a conventional diagramming effort after an Abbott textual

analysis. The diagramming may include context diagrams giving hardware objects and

external interfaces, DFDs displaying abstract data types and data pools, and state transition

diagrams (STD) giving active objects and object-based control structures. The next step is

17

to produce an informal solution strategy using a natural language outline and HOOD

diagrams describing the current level of abstraction. Last, formal HOOD diagrams are

developed displaying the parent-child relationships and operations (composition hierarchy),

usage hierarchies, implementation links, exceptions, and the data flows.

HOOD is based on the Ada language and, as such, is not a complete object-oriented

method. It does not have inheritance or polymorphism, major object-oriented concepts, and

has little support for reusability, a major object-oriented benefit.

2.3.5 Object-Oriented Analysis and Design (OOA/OOD) (Coad and Yourdon, 1991)

OOA/OOD was the first widely published account of a reasonably complete object

oriented analysis method (Graham, 1994). An important goal of the method is the reduction

ofa problem's complexity and the system's responsibility within it. The method enumerates

eight principles, including abstraction, encapsulation, and inheritance, for the management of

complexity within the problem space. It shifted emphasis from design to analysis with no

major difference between analysis and design graphical notations. It also removed language

constructs, such as Ada data structures, from the methodology making it more widely

applicable.

Two key object-oriented concepts as defined by this method are

Object: An abstraction of an entity about which information has to be kept; an

encapsulation of attribute values and their exclusive services.

Class: A description of one or more objects with a uniform set of attributes and

services including the process of how to create new class objects.

18

Their analysis consists of five stages:

Subject Layer: The problem is decomposed into subjects which may be thought of as

subsystems or class categories. Subjects are a mechanism for partitioning large,

complex models and for organizing the subsystems within a problem. Subjects

should contain approximately five to nine objects. This process can take place at

various stages of the analysis and can be used for an initial decomposition or to

organize the model after objects have been identified or refined (Graham, 1994).

Object Layer: Objects are identified in greater detail by locating the system entities

that perform activities.

Structure Layer: Two types of structures must be identified: classification structures

r
and composition structures. The classification structures incorporate inheritance.

Attribute Layer: Attributes are detailed, and extended relational analysis (ERA) is

used to develop modality and multiplicity relationships.

Service Layer: A service is an object's specific behavior. The service layer specifies

each object type's methods for creating and deleting instances, getting and putting

values, and more individualistic object behavior. This layer captures methods and

message connections between class and objects and defines the functional aspects of

the system.

These layers are developed using five activities outlined by Coad and Y ourdon: 1) Finding

Class & Objects, 2) Identifying Structures, 3) Identifying Subjects, 4) Defining Attributes,

and 5) Defining Services.

19

The analysis (OOA) section of the methodology now transitions into the design

(OOD) section. Coad and Yourdon (1991a) explain how OOA and OOD relate to each

other. "The OOA layers model the problem domain and the system's responsibilities. The

OOD expansion of the OOA layers model a particular implementation" (page 178).

The object-oriented design adds four components to the OOA layers making the

overall process more specific to design issues and lower level concerns. The OOA results

are refined into four components: the problem domain component, the human interaction

component, the task management component, and the data management component.

In the problem domain component, objects and classes that can be reused from

previous projects are identified, and classes are organized into groups. Programming

language specifics are addressed in terms of making changes to accommodate inheritance

structures. Additional activities in this component include addressing performance and data

storage considerations.

The human interaction component identifies the users of the system who are defined

along with their characteristics and work task scenarios. A command hierarchy is developed

and refined by organizing this hierarchy using common human-computer interaction

guidelines. Prototyping is used for testing human interaction.

The task management component identifies the tasks in the system including event

driven and clock-driven tasks. Also defined are those tasks that have priority in the system

and those that are critical to the system. The number of tasks should be minimized to

reduce complexity. After task identification, the tasks can be specified by defining what the

task is, how the task coordinates within the system, and how the task communicates.

20

The first activity in the data management component is to determine what type of

data management process or system will be used, such as flat files or database technologies.

The proper tools for managing the data within the data structures must be chosen as well as

designing a data layout. The corresponding services to actuate and process the data within

the objects and the system are designed. At this point, the OOA/OOD model, a multi layer,

multi component model is complete.

2.3.6 OMT (1991)

OMT (Rumbaugh et al., 1991) is widely regarded as one of the most complete

object-oriented analysis methods (Graham, 1994). OMT describes object-oriented as a way

to develop and organize software that collects objects incorporating behavior and data

structures. OMT has three phases of analysis and design: the analysis section, the system

design, and the object design.

The analysis section of OMT builds three separate models using three different

notations. The development of these models is an iterative process throughout OMT.

The first analysis model is the Object Model which includes diagrams built with a

notation that expands entity relationship modeling to include entity operations. This phase

describes the structure of the system's objects and the relationships among them. The object

model represents the static structural aspects of the system.

The second analysis model is the Dynamic Model. Its purpose is to capture the

essential dynamics of the system. Every object identified in the Object Modeling process has

a Dynamic Model constructed using State Transition Diagrams. These are used to describe

21

the control processes of the system. This model represents the behavioral and control

aspects of the system over time.

The third model in the analysis phase is the Functional Model. The Functional

Model has the highest level of abstraction and is used to describe the computations within

the system and the functionality of the system.

The analysis phase starts with the development of a written description of a problem

statement for the problem domain before the three modeling techniques are applied. The

Object Model is built by identifying object classes, class associations, object and link

attributes, and inheritance. The nouns in the problem statement usually identify the object

classes in the system while the verbs or verb phrases in the problem statement can be used to

identify associations among classes. Classes during the Object Model are also organized

and simplified using inheritance.

The other two analysis phase models are then developed, The Dynamic Model is

developed by identifying interaction sequences, event flow diagrams for the system, and a

state diagram for each class exhibiting important dynamic behavior. The Functional Model

is then constructed by identifying constraints and input and output values, creating data flow

diagrams for functional dependencies and writing functional and optimization descriptions.

The second phase of OMT is the System Design phase. This phase encompasses the

complete design of the system's architecture with an organized collection of subsystems, a

description of the data structures, a decision on control structures, and other system design

fundamentals.

22

The system design phase begins by organizing the system into a series of subsystems

which are also allocated to system resources. The basic data structure is developed

including the mechanisms for controlling data. Other steps during this phase include

identifying concurrency considerations and selecting an approach to software control

implementation.

The third ·oMT phase is the Object Design phase. This phase takes the object

structure and refines these objects by incorporating information from the Dynamic and

Functional Model stages into object operations.

The Object Design phase starts by combining the three models from the analysis

phase to obtain object operations. These operations consist of each event in the Dynamic

Model and each process in the Functional Model. Next, algorithms and data structures are

developed for these operations followed by the optimization and implementation of class

structures, associations, and software control.

Two key object-oriented concepts as defined by this method are

Object: Concept, abstraction, or thing in the world with crisp boundaries

meaningful for the problem at hand to promote understanding of the real

world and provide an asis for computer implementation.

(Object) Class: Group of objects with similar properties (attributes),

behavior (operations), common relationships to other objects, and common

semantics.

23

2.3.7 Booch (1991)

Booch's evolution in object technology continued with the publication of his 1991

book, considered by many to be essential reading for those examining object-oriented

technology. A second edition was published in 1994.

The most difficult part of object-oriented analysis and design, according to Booch, is

the identification of objects and classes. The classification process is the most fundamental

issue in object-oriented analysis and design. He is also very concerned with the complexity

of software systems and the methods to control and manage complexity. He stresses the

importance of the structure of complex systems.

Booch proposes four models for object-oriented development: the logical and
r

physical structures of a system and its static and dynamic semantics. Booch differentiates

between the logical and physical structures of a system; and within each structure, a static

and a dynamic model are developed. His method is an iterative one with the continual

refinement of the logical and physical frameworks of the system.

Two processes are described for the object-oriented development process: a macro

and a micro process. The macro process, which controls the micro process, develops core

system requirements, models desired system behavior, creates an architectural design, and

provides for an evolutionary implementation. The micro process is the more concrete

activity driven by and necessitated by the macro process work product. The tasks in the

micro process include identifying classes, objects, and the semantics of these classes and

objects. The micro process also identifies the relationships among the classes and objects as

well as specifying the interface and implementation of the classes and objects.

24

To capture the logical static description of the system, Booch uses object diagrams

for displaying objects and object relationships. Class Diagrams are used similarly to show

the class structure and the relationships among classes. The logical dynamic view of the

system uses State Transition Diagrams to describe an object's states and the transitional

events and resultant activities. Interaction Diagrams are developed to detail any dynamics or

interactions among the objects in the object diagrams. The physical static view of the

system uses module and physical diagrams for designing and allocating the class and object

modules to processes and processors.

2.3.8 Object-Oriented Software Engineering (OOSE) (Jacobson, 1992)

Jacobson developed the use case approach to object-oriented design and analysis,

and it forms the integral part of OOSE. Larry Constantine captured the essence of OOSE in

his foreword to Jacobson's book. "His approach centers on an analysis of the ways in which

a system is actually used, on the sequences of interactions that comprise the operational

reality of the software being engineered."

The basis for OOSE originates from three totally different techniques: object

oriented programming, conceptual modeling, and block design. The object-oriented

programming technique supplies OOSE with the object-oriented concepts of encapsulation,

inheritance, and the relationships among classes and instances. Conceptual modeling is used

to develop an understanding of the system and to construct the system architecture. Block

design, originating in the telecommunications industry, is used to provide diagrams of the

software modules and functionality along with the connections and interfaces among them.

25

OOSE works with five different models to model system development, each of

which attempts to capture some part or aspect of the system by focusing only on that part of

the system. These models are

I. Requirements model.

2. Analysis model.

3. Design model.

4. Implementation model.

5. Test model.

The requirements model attempts to capture the functional requirement of the

system from a user perspective and focuses on how a potential user would use the system.

This is accomplished by the development of three sub-models 1) a use case model, 2) an

interface description, and 3) a problem domain model.

The use case model is the most vital part of Jacobson's methodology and is the main

concept associated with OOSE and, as such, has emerged in other methods (Rumbaugh,

1994; Graham, 1994; Wilkinson, 1995). The main idea of the use case model is to describe

how users interact with and use the system. It utilizes the concept of actors to define what

exists outside the system that impacts the system and the idea of use cases to describe what
r

exists and should be done by the system. Actors represent what interacts with the system

and define roles that users play in exchanging information, in the form of a dialogue, with

the system. Users of the system are instances of actors as actors are defined as a class and

the user as an instance of the actor class. The user is the actual user of the system while the

actor represents a certain role that a user can play (Jacobson, 1992).

26

Jacobson describes two kinds of actors, primary and secondary. The primary actors

are those who are going to use the system directly while secondary actors are those actors

who are supervising and maintaining the system. Secondary actors exist and operate to

keep the system usable for the primary actors. As the system structure must reflect the

user's perspective, the identification of the use cases start with the primary actors. This will

keep the development of the system as close as possible to the most important users.

Actors are identified first as they are the major tool for determining the use cases.

The instance of the actor, the user, performs a number of operations on the system.

This sequence of operations or transactions are related in a behavioral sense and form the

use case. The use case incorporates these related series of user-system interactions into a

conceptual whole. Each use case is a specific way of using the system, and every execution

of the use case may be viewed as an instance of the use case (Jacobson, 1992). The user

may trigger a use case by interacting with the system, causing the use case to initiate one or

more activities associated with the particular use case. The use case is a complete

description of the events specifying all the actions between the user and the system, and a

particular use case instance will exist only as long as the use case is operating or performing

the transactions or activities of the use case.

The use cases are identified through the actors. The actor's perspective of the E

system is determined and may include questions such as

1. What are the main tasks of each actor?

2. Will the actor have to read or write or change any of the system

information?

27

3. Will the actor have to inform the system about outside changes?

4. Does the actor wish to be informed about unexpected changes?

The use case model uses a diagram where the system is represented by a boundary

box. Actors are identified as persons outside the box while use cases are represented as

ellipses inside the box. An illustration of a generic use case is found in Figure 2. The use

case model is described by the actors and the use cases in the model, together with the

associated relationships among these entities in the system.

Use Case Model

8
8--J----t-

8
Actor 2Actor I

Figure 2. Use Case Model Diagram Example.

The first part of a use case to be described is the basic course. The basic course

details the most important course of events that give the best understanding of the use case.

Each use case has one basic course, but may also have several alternative courses.

28

I

Alternative courses are possible variants of the basic course and include any possible errors

and error handling that may occur during the use case.

Extension may be used to structure and relate use case descriptions. Extension

stipulates how one use case may be inserted into another use case, thereby extending the use

case description. This allows for greater flexibility and easier modification of the system by

providing a mechanism for structuring relationships and associations among the use cases.

During the operation of a use case, any extension by another use case occurs at the point of

insertion. After the extended use case has completed its activity, the original use case

continues and completes its operation.

Jacobson calls this part of the analysis and design use case driven design. The design

of the whole system is driven and controlled by how the users use and make use of the

system. Changes and modifications to the system are accomplished by remodeling the

actors and/or the use cases.

The other two sub-models of the requirements model are created to support the use

case model. The interface description captures the user's logical view of the system in an

attempt to make the system behavior consistent with the user's logical system view.

Jacobson suggests a prototype of the user interface as the perfect tool for eliciting the user's

logical view of the system and refining the user interface. The problem domain model is

developed to analyze objects in the problem domain which will have a counterpart in the

system.

The use case model is used to develop the other models in the analysis and drives the

development of these models (Figure 3). The other models detail various sections of system

29

development. The analysis model provides structure to the system through the use of three

types of objects: 1) interface objects, 2) entity objects, and 3) control objects.

The Design Model refines the Analysis Model and aims to adopt and refine the

object structure to the current implementation environment. The Implementation Model

proposes to implement the system and, lastly, the Test Model attempts to verify the system

design by testing the Implementation Model.

Use Case Model

Domain
Object
Model

~
~

~

I

\ ~I

Analysis Design Implement. Testing

Model Model Model Model

r

Figure 3. Use Case Model Drives the Other Analysis and Design Models.

2.3.9 Booch (1994)

The second edition ofBooch's seminal work was published in 1994. In this edition,

Booch states that the two primary activities of analysis are domain analysis and scenario

planning. In domain analysis, the objects and classes of a particular problem domain are

identified. The scenario planning, an addition to the 1994 edition, is described as the

central activity in analysis.

30

Scenario planning is used to identify and develop all the fundamental behaviors of

the system. Booch describes the first two steps of scenario planning as:

1. Identify all the primary function points of the system, and, if possible,

group them into clusters of functionally related behaviors. Consider

also clustering according to hierarchies of functions, wherein certain

high-level functions build upon more primitive ones.

2. For each interesting set offunction points, storyboard a scenario,

using the techniques of use-case and behavior analysis briefly

described by Booch in his Chapter 4. CRC card techniques are

effective in brainstorming about each scenario. As the semantics of r
each scenario become clearer, document them using object diagrams

that illustrate the objects that are initiators or contributors of behavior

and that collaborate to carry out the activities of the scenario.

Include a script that shows the events that trigger the scenario and

the resulting order of actions. In addition, document any assumption,

constraints, or performance issues for each scenario.

The remaining steps build on and refine these first two steps.

Scenario planning includes use case or behavior analysis techniques as part of the

second step. This is an addition to Booch's 1991 method and recognizes the use case as a

valuable part of the central analysis activity. While the use case is not the main driving point

of the analysis, it is included in the major analysis activity.

31

2.3.10 Other Use Case Methods and Applications

Other examples of the use and extension of Jacobson's use case model include

combining the main use cases created during a requirements analysis with early rapid

prototyping (Hansen and Miller, 1995). This approach provides the user with a graphical

representation of the main use case scenarios early in the development process. The user

feedback generated during this process provides the designers with an opportunity to assess

and verify the main use case behavior as well as providing information about designing the

other use cases in the system.

American Management Systems (AMS) uses an approach that extends the use case

model through the use of several levels of use cases, functional area models, and use case

dependency diagrams (Armour, Boyd, and Sood, 1995). AMS found that a single, flat layer

or level of use cases was not sufficient when modeling large business systems. AMS

expands and stratifies the use case model to include four primary use case levels:

1. High level use cases.

2. Expanded use cases.

3. Detailed use cases.

4. Abstract use cases.

High level use cases identify and describe broad system behaviors initiated by the

actors associated with the system (Armour, Boyd, and Sood, 1995). The expanded use case

is a refinement of the high level use case and is similar to the basic course of the Jacobson

method. The expanded use case level focuses on the fundamental activities of the high level

use case behaviors. In the third level, the detailed use case, detailed descriptions of system

32

functionality are developed, including exception conditions and alternative courses like

Jacobson's. The last level, the abstract use case, describes common functionality that is

utilized by multiple use cases.

AMS uses a functional area model to organize high level use cases into functional

areas to provide a framework for understanding the system's functional architecture. In

their business modeling, AMD organizes use cases into functional areas based upon business

activities whereby system behavior is displayed from a functional viewpoint. This provides

the analyst a look at the major functions supported by the system together with the activities

necessary to support those functions.

AMS also develops a use case dependency diagram. The use case dependency

diagram, as outlined by AMS, provides:

1. Enhanced understanding of system functionality and scope, by

organizing system functionality into a life cycle of events and states.

2. Increased traceability by helping to map use cases to any work flow

models or business scenarios previously developed.

3. Identification of missing use cases. A use case with a precondition

that is not met by the execution of another use case may indicate a

m1ssmg use case.

Among others considering use cases is Berard (1995). Berard, while pointing out

the value of use cases, cautions software engineers to beware of the difference of the

functional aspects of use cases and the object-oriented approach. Use cases describe the

system in terms of how the user will see it and use it and in terms of what is delivered to the

33

uses. This is basically a functional view of the system, and functional approaches localize

information around functions while object-oriented approaches localize information around

objects. Berard advises that functions and object do not map directly to one another so the

underlying object-oriented architecture of a system should not directly reflect the use case,

functional view of the system. He says that the creation, integration, and maintenance of

use cases should be carefully controlled to avoid problems in object duplication among

several use cases, localization of information into object definitions not functional

definitions, and maintaining information hiding in system objects.

2.3.11 Unified Method (Expected 1996)

The Unified Method is expected to be published sometime during the summer of

1996 (Booch and Rumbaugh, 1995). It is the unification ofRumbaugh's OMT method with

the Booch method and the incorporation of important ideas from other methods. It should

be noted and stressed that Jacobson's use case will be a part of the model, with only minor

changes to better match the overall approach (Booch and Rumbaugh, 1995).

The Unified Method, along with Jacobson's use case model, represents a large

majority of the users of object technology. As such, it has the potential to become the

standard for object-oriented analysis and design. Draft version 0.8 is available from

Rational Software Corporation and describes the method as a third generation object

oriented analysis and design method developed by Grady Booch and Jim Rumbaugh from

the unification of the Booch and OMT methods (Booch and Rumbaugh, 1995). The

method is scheduled to be designed so that Booch and OMT users can both move into the

new, unified method. Because of its preliminary nature, the discussion of the Booch and

34

r

and aggregation relationship as a theoretical concept will be explored further with Jacobson. f

2.4 Summary

The object-oriented analysis and design methods presented in this chapter feature

some of the most important contributions in the development of object-oriented technology.

Taken together, they trace the evolution of object-oriented technology (Table 3).

35

OMT methods and this paper's interest in user centered object-oriented analysis and design,

the only part of the method presented here is the use case model. The discussion in the draft

of the Unified Method indicates that the method will rely upon Jacobson's use cases.

The Unified Method defines. a use case as a generic description of an entire

transaction involving several objects and a use case model as the collection of use cases

specifying or characterizing the behavior of a whole application system together with one or

more external actors that interact with that system (Booch and Rumbaugh, 1995). The use

case's meaning can usually be an informal text description of the external actors and the

sequence of events among the objects in the system providing the use case's functionality.

The use case, as such, will be a description of particular behavior in the system at a high

level of abstraction. The use case model pro trays the entire system as the collection of use

cases at the top level of abstraction.

A use case diagram like Jacobson's is used to display the complete system and its

use cases associated with their actors. Use cases that utilize other use cases are denoted,

and a box surrounding the use cases acts as the boundary between the system and the

actors.

The Unified Method authors conclude their discussion with the note that inheritance

Table 3. A Brief Summary of the Object-oriented Methodologies Under Consideration.

MethQd and Year Introduced

Abbott, 1983

Major Felltyre or Contribytion

Use of natural language problem descriptions.

Booch, 1986

Adopted by many other methods, not object-oriented

Oldest of Object-oriented methods.

GOOD, 1986

HOOD, 1989

Based on Ada.

Based on Ada.

Two kinds of objects, passive and active.

Coad and Y ourdon, 1991

Two types of hierarchies, compositional and usage.

First widely published, complete object-oriented method.

OMT, 1991

Enumerated abstraction, encapsulation and inheritance.

Regarded as a very complete method and notation.

Booch, 1991

Widely used by developers.

Classic object-oriented description.

Jacobson, 1992

Popular method.

Use case model introduced.

Booch, 1994

Use cases adopted by other methods.

Scenario planning part of central analysis activity.

AMS, Berard; 1995

Unified Method, 1996

Use case suggested as one way for scenario planning.

Expand use cases, caution of use case use.

Merging of two dominate methods, OMT and Booch.

Add use case model to method.

36

2.5 Conclusion

This chapter surveyed and examined several major object-oriented analysis and

design methodologies to accomplish a major objective of this paper, selecting a user

centered object-oriented analysis and design methodology. After this evaluation, it is the

conclusion of this paper that selecting Jacobson's use case driven approach achieves that

objective.

Jacobson's use case driven approach immediately centers on the user and remains

centered on the user throughout the analysis and design process. This approach develops its

first concepts and models of the system from the user's perspective and uses them to drive

all the other analysis and design in the process. It develops use cases, at the start of the
r

analysis, that define the system from the user's perspective, the user's perception on how

the user will utilize the system and what the user will do with the system. This method's

emphasis is on the user, and that emphasis drives the entire analysis. Jacobson's use case

driven approach remains user centered throughout system analysis and design.

Use cases center all analysis and design on the user and have no counterpart driving

system analysis in the other methodologies. Coad and Yourdon' s human interaction

component occurs after the completion of object-oriented analysis and does not address the

issue of the user's perspective of using the system as part of system analysis. They do,

importantly, use their human interaction component to identify user characteristics and work

task scenarios, but, again, this is after object-oriented analysis. They recommend that

developers incorporate human-computer guidelines in the development of a system

37

prototype, but this is during the design phase and is used only for interface development, not

system analysis.

The Booch method and Rumbaugh's OMT have been the leading methodologies in

the field and are merging into the Unified Method. The Booch 1994 method suggests using

use cases as part of its central analysis activity, scenario planning. The Unified Method will

include Jacobson's use case model which is instructive about the evolution of their current

approaches.

Rumbaugh (1994) had this to say about use cases in 1994: "Most methodologists

now agree that user-centered analysis is the best way to solve the right problem. Capturing

the user's needs is a major focus of several methodologies, including Rubin and Goldberg's

OBA and Jacobson's Objectory. In particular, Jacobson's use cases have been well received

by just about every methodologist including us."

Nancy Wilkinson, writing in November of 1995 (Wilkinson, 1995), says this about

Jacobson's use case methodology: "Most important to the methodology is, of course, the

notion of stressing uses of the system to build reusable and adaptable applications. Use

cases have been so well received that other methodologists have begun to incorporate them

in their methods and notations."
F
i

38

CHAPTER 3. IMS USER CENTERED SYSTEM ANALYSIS

3.1 Introduction

This chapter applies Jacobson's use case driven approach to system analysis to the

IMS. The analysis draws on interviews with the NDDOT IMS coordinator, discussions

with a transportation research professional, an interim IMS report, and background surveys

(Schmidt, 1996; Tolliver, 1996). These were used to capture and provide a user centered

framework for systems analysis. The chapter uses Jacobson's use case methodology

described in Chapter 2 and augments the use case concept with the AMS stratification, also

described in Chapter 2. The study also introduces an extension to Jacobson's actor

identification.

The chapter starts out with Jacobson's requirements model, the first model in his

methodology, which initiates actor identification and use case development. Jacobson's
i--

actor identification determines the primary and secondary actors in the system, and this

paper extends that concept with a priority ranking of the primary and secondary actors

identified in the system. The use case development is delineated into high level use cases as

developed by AMS and is followed with an example of a high level use case detailed into an

expanded use case. This is followed by a section on object specification of the example use

case which includes descriptions and diagrams of the objects as well as a narrative of the

example use case with objects included. This section also discusses the inheritance and

encapsulation of the example objects, and the reuse of the example objects by the other high

level use case identified in the system. A comparison is made between the user centered,

39

object-oriented analysis adopted in this paper with a data-driven approach. The chapter

closes with a discussion about the interface description of the IMS.

3.2 Requirements Model

The requirements model is developed to delineate the system and define the

functionality supported by the system. It is the first model developed in the methodology;

and its central feature and the central feature of the entire analysis is the use case. The

requirements model drives the subsequent models which include the analysis model, design

model, implementation model and testing model (Jacobson, 1992). It is central to the

development of the system, and all other models are verified against the requirements

model. The requirements model is developed from the users' perspective and includes I)

actor identification, 2) use case development, 3) interface descriptions, and 4) problem

domain objects. The fourth is not discussed because of the more standard notation adopted

for the object diagrams (OMT).

3.2.1 Actor Identification

The identification of the IMS actors involved interviews with the NDDOT IMS

coordinator, an interim IMS report, and background surveys with a NDDOT transportation

planner (Schmidt, 1996). The first survey narrowed down the potential users in the NDDOT

while the second survey delineated among primary and secondary actors as described by

Jacobson. The interviews identified a significant gap between the expected level of use by

the transportation planners and the other actors. Transportation planners are going to be

the most important users of the system. The second survey was designed to address this

issue and extended Jacobson's actor identification by adding a priority ranking of the actors.

40

This priority ranking is particularly useful when one actor dominates the expected use of the

system. The rankings in the survey are based upon an assessment by the NDDOT IMS

coordinator.

The primary actors in the IMS, ranked in order of the importance of their use of the

system, are 1) Transportation Planners, 2) Mapping Department, 3) Rail Program, and 4)

Geographical Information System (GIS). The first three of the primary actors are humans

while the fourth primary actor is a computerized system. The human actors have exclusive

priority over the computerized system actors. The secondary actors, ranked on the same

scale as the primary actors, are 5) Traffic Operations, 6) Upper Management, 7) Planning

Division Head, 8) Operations, 9) Program and Project Development, 10) Secondary Roads,

11) Pavement Management System, 12) Transportation Data Systems, and 13) Traffic

Operations Systems.

The transportation planners were identified as the main users of the IMS. In fact,

their use is expected to dominate the system and, as such, will receive the most consider

ation during the analysis and design process. The other 12 users, of which three are primary

users, will receive less attention. In that context, the following discussion will concentrate

exclusively on the transportation planner.

3.2.2 High Level Use Case Examples

This section presents several high level use cases of the IMS. The use case

stratification of the AMS was used in a survey to stratify background use case information

into 1) high level use cases, 2) expanded use cases, 3) detailed use cases, and 4) abstract use

cases. The use cases presented here are high level use cases.

41

A series of interviews, meetings, an interim IMS report, and surveys were used to

develop these preliminary high level use cases. The interviews, meetings, and report

identified several major, high level use cases, and the surveys provided context for the

functionality involved in these use cases.

The IMS high level use cases presented here are I) Intermodal Facility Efficiency, 2) r
Estimate Highway Investment Costs, 3) Railroad Branchline Rehabilitation Evaluation, 4)

Grain Elevator Modal Split, and 5) Fertilizer Distribution Facility Location. A sixth high

level use case, Railroad Branchline Abandonment, is presented in greater detail in Section

3.2.3. Figure 4 displays the six high level use cases.

I. J11termodal Facility Efficiency is started when transportation planner

wants to evaluate a particular intermodal facility. When

tramportation planner has selected the facility from a graphical

display of intermodal facilities, the system will present the

performance measures related to that facility in a form selected by

transportation planner.

2. Estimate Highway Investment Costs is used when the transportation

planner wants to generate a cost estimation of investing in the

highway infrastructure associated with an existing or new intermodal

facility. Tramportation planner will assign the facility location in

reference to the highway system, and the IMS will calculate a cost

estimation for investing in each section of highway affected by the

facility.

42

3. Railroad Branchline Rehabilitation Evaluation is used when

the IMS transportation planner wants to generate a benefit-cost

analysis of investing in the rehabilitation of a railroad branchline.

Transportation planner will select the railroad branchline for analysis

and the IMS will calculate the benefits and costs to the transportation

network associated with improving the selected railroad branchline.

lntermodal Facility
Efficiency

Estimate Highway
Investment Costs

Railroad Branchline
Rehabilitation Evaluation

Grain Elevator
Modal Split

Fertilizer Distribution
Facility Location

Railroad Branchllne
Abandonment

Figure 4. High Level Uses Cases of the Intermodal Management System.

43

4. Grain Elevator Modal Split is initiated when transportation planner

wants to examine any changes in the modal split between rail and

truck grain traffic. Transportation planner will interact with the IMS

to select the grain elevator or elevators, and the system will return the

grain traffic characteristics by mode of transportation.

5. Fertilizer Distribution Facility Location is started when

transportation planner needs to inspect and survey the location of

fertilizer distribution centers. The system will provide a graphical

display outlining all fertilizer distribution centers in the state in

relation to the state highway system.

3.2.3 Railroad Branchline Abandonment Use Case

A major use of the IMS will be the railroad branchline abandonment use case

scenario. In this use case, the transporiation planner initiates an analysis to calculate the

impacts that an abandonment of a railroad branchline will have on the state highway system.

Railroad branchline abandonment diverts traffic from the railroad to the highway system and

has an impact on the maintenance and traffic characteristics of the highway system. This use

case was identified and elaborated by using surveys, interviews, and an interim IMS report
F rmentioned. It is presented here to illustrate the application of user centered object-oriented

analysis to the IMS as well as the complexity of the IMS and the design issues involved in

developing the system.

44

The use case is summarized as follows:

Railroad Branchline Abandonment is started by the transportation planner when he

wants to evaluate what impacts will occur to the highway system when a railroad branchline

is abandoned. The transportation planner will inform the IMS that he wants a railroad

abandonment analysis, and the system will respond with a display of the railroad network.

After the transportation planner has selected the branchline to be abandoned from the

railroad network, the system will calculate the highway impacts specific to the abandonment

and return a series of reports to the transportation planner.

3.3 Railroad Branchline Abandonment Expanded Use Case

Jacobson's basic course ofa use case provides greater detail and traces the most

important system events giving a better understanding of the use case. AMS's comparable

decomposition is the expanded use case, the expansion of the high level use case into

greater detail. The expanded use case for the Railroad Branchline Abandonment use case is

as follows:

When the transportation planner wants to start the Railroad Branchline

Abandonment use case, he selects an icon supplied by the IMS for this use case. When

selected, the icon launches a full screen window displaying the railroad network, the

' highway network, and the grain elevator and fertilizer distribution intermodal facilities. The '

transportation planner chooses a railroad branchline to analyze by clicking on the endpoints

of a branchline segment on the railroad network. The screen display changes to highlight

the selected branchline and the potentially affected portions of the highway network. At this

point, transportation planner may do two things: I) terminate the preliminary analysis

45

process or 2) start the analysis process. If transportation planner terminates the process, he

is returned to the first screen display in Railroad Branchline Abandonment (the railroad

network, the highway network, and the grain elevator and fertilizer distribution intermodal

facilities). If transportation planner starts the analysis process, the following sequence of

system events occur:

I. The system determines if a valid branchline scenario has been

selected. If a valid branchline scenario has not been selected, the

system terminates the analysis, informs the transportation planner via

a dialogue box, and returns to the first screen display. If a valid

branchline scenario has been selected, the transportation planner is

informed via an informational box that an analysis scenario has

started. The informational box tracks the progress of the analysis

informing transportation planner as the process continues.

2. The analysis process creates a data structure accessing the Pavement

Management System and a default highway impact database. The

transportation planner is presented a dialogue box allowing 1) edit

assembled data, 2) proceed with analysis, and 3) terminate analysis. If

transportation planner chooses to edit the data, a window appears

with the highway impact data for this analysis whereby transportation

planner may edit the data or return to the last dialogue box. If

transportation planner terminates the process, the system terminates

the analysis, informs the tramportationplanner via a dialogue box,

46

and returns to the first screen display. If transportation planner

proceeds with the analysis, a check is done on the data structure to

ensure that the data going to the calculation objects are within valid

ranges. If any invalid data are detected, the IMS suspends execution,

notifies transportation planner of the invalid data via a dialogue box,

and waits for a decision from transportation planner. The dialogue

box presents transportation planner with the invalid data, the reason

why it is considered by the system to be invalid, a possible result of

continuing with the invalid data, the location of the invalid data, and

the choice of either continuing the analysis process with the invalid

data or terminating the analysis. If transportation planner terminates

the process, the system terminates the analysis, informs the

transportation planner via a dialogue box, and returns to the first

screen display. If tramportation planner decides to continue with

the analysis process or no invalid data has been detected, the analysis

process proceeds to step 3.

3. The calculation of the highway impacts is performed. This consists

of the following steps and is done by the IMS.

3 .1 Compute ESAL lives of impacted highways by functional

class.

3.2 Compute portion of highway deterioration attributable to

traffic.

47

3.3 Compute average cost per ESAL of impacted highways by

functional class.

3.4 Compute average ESALs per VMT by truck type, highway

class, and pavement type.

3. 5 Compute weighted average truck length of haul and backhaul

factor.

3.6 Compute incremental ESALs by truck type, highway class,

and pavement type.

3. 7 Sum incremental ESALs across pavement types.

3. 8 Compute annual incremental pavement costs by highway class

and pavement type.

3.9 Compute highway costs and ESAL factors.

3. IO Generate highway impact reports.

4. When the analysis process has been completed, transportation

planner is presented with a full screen display of the geographical

area involved in the analysis with the highway network highlighted

according to the results of the analysis. Transportation planner also

has available a report in WordPerfect format containing graphs, data

categories, and values returned by the analysis and a template

narrative explaining the various components of the report. The

report graphs are also available for screen display in sizeable

windows through a pop-up menu structure. At this point, Railroad

48

Branchline Abandonment has been completed, and transportation

planner may close Railroad Branchline Abandonment or remain at

the first screen display in Railroad Branchline Abandonment.

3.3.1 Object Specification of the Railroad Branchline Abandonment Use Case

This section presents the specification of the objects derived from the Railroad

Branchline Abandonment (RBA) Expanded Use Case narrative. The discussion includes a

description of the objects and their roles in the use case. Figure 5 shows a diagram of the

object specifications starting with the RBA Icon object while Figure 6 displays the object

specifications starting with the HIA Start Window object.

I. RBA Icon: The icon represents the interface to the use case and will

initiate the RBA use case. It has methods for showing itself and

displaying the starting window in the analysis process. It knows its

screen position, icon image, and display parameters. Its role is to

provide access to the use case.

2. HIA Window: This object presents a display of the railroad network,

the highway network, the grain elevators, and the fertilizer

distribution centers. It has several methods for showing itself,

showing or hiding the transportation networks and intermodal

facilities, and showing the results of the analysis. It also has methods

for starting or terminating analysis. Its role is to display the state of

the analysis process and to act as a central point for message passing

among the objects.

49

Figure 5. Railroad Branchline Abandonment Use Case Object Specification, Part I

i
I

50

RBAlcon

XYZ Screen Position
Icon Image
Color

ShowMe
ShowRBAStartWindow

\\1
HIA Start Window

XYZ Screen Position
Color
Border Type

ShowMe
HideMe
Show/Hide Transportation Networks
Show/Hide lntermodal Facilities

IMS Icon
Star!Analysis
T erminateAnalysis

XYZ Position ShowResults
Icon Image
Color 1/\ 1 11
ShowMe ~

IHideMe 1 1
IMS Window

RailRoad Network Highway Network XYZ Screen Position
BorderType

RailRoad Network Highway Network Color
XYZ Screen Position XYZ Screen Position

ShowMe
ShowMe ShowMe
HideMe HideMe
Select Segment Generate Impact Segment 17Valid Segment Highlightlmpacts '
Unselect Segment

I\ Grain Elevators Fertilizer Centers

I\ I Railroad Locations Railroad Locations
I

ShowMe ShowMe
HideMe HideMe

Railroad Branchline Abandonment Use Case Object Specification, Part I

Transportation Network

XYZ Screen Position
Railroad Network I\ I\Highway Network

I
Airport Network

HideMe
Select Segment
ShowMe
Valid Segment
Generate Impact Segment
Unselect Segment

lntermodal Facility Location

Railroad Locations
Highway Locations

ShowMe
ShowRailroadLocations
ShowHighwayLocations

Figure 6. Railroad Branchline Abandonment Use Case Object Specification, Part II

l
i

52

HIA Start Window

XYZ Screen Position
Display Attributes

ShowMe
HideMe
Show/Hide Transportation Networks
Show/Hide lntermodal Facilities
StartAnalysis
TerminateAnalysis
ShowResults

r
Restricted PMS 1 1 1 1 1

Valid PMS data ranges 1 Information Box

XYZ Position
Retrieve Highway Impact Data Color
Validate PMS Data Messages
Edit PMS Data

TrackProgress

1
1
-1 1

I 1 Dialogue Box

Highway Impact Analysis XYZ Screen Position
Messages
Response Buttons

Compute ESAL Lives of Impacted Highways
Compute Highway Deteriation Attributable to Traffic 1 Analysis Terminated
Compute Avg. Cost per ESAL Analysis Proceeds
Compute Avg. ESALs per VMT Popup Menu Edit Data
Compute Weighted Avg. Truck ALH & Backhaul ShowMe
Compute Incremental ESALs XYZ Screen Position

Sum Incremental ESALs
Compute Annual Incremental Pavement Costs Show Graphs

Compute Highway Costs and ESAL Factors ShowMe

Generate Highway Impact Reports HideMe

' ,J
1- 1 1

1n GraphObj.

lntermodal Traffic XYZ Screen Position

Grain Traffic
Graph ESALS

Fertilizer Traffic Graph High. Costs
1 1 n

I J

Defa!Jlt Highway Impact Data WordPerfect Report

ValidDataRanges RBA Format Parameters
RBA Narrative Template

Edit Default Data OLE Object

Validate Default Data
Retrieve Default Data Write HIA Report

Send HIA Report
ShowMe

Railroad Branchline Abandonment Use Case Object Specification, Part II

3. Railroad Network: The Railroad Network object knows the railroad

network and displays this inside the HIA Window. It has methods

for selecting/unselecting a railroad branchline segment and for

validating that segment as well as for showing and hiding itself This

object is inherited from the transportation network object. Its role is

to provide a mechanism for the user to select a railroad and to

provide visual cues of the state of the railroad network.

4. Highway Network: The highway network object knows the highway

network and displays this inside the HIA Window. It has methods

for selecting a highway segment, for generating a highway impact

segment, and for validating the selected highway segment. This object

is inherited from the transportation network object. Its role is to

display and provide visual cues of the state of the railroad network.

5. Grain Elevators: This object is inherited from the Intermodal Facility

object, knows the railroad locations of the grain elevators, and has

the method ShowMe. Its role is to provide a visual cue to the user of

the location of grain elevators on the railroad network.

6. Fertilizer Centers: This object is inherited from the Intermodal

Facility object, knows the railroad locations of the fertilizer centers,

and has the method ShowMe. Its role is to provide a visual cue to the

user of the fertilizer center location on the railroad network.

54

l

7. Dialogue Box: This object is inherited from the IMS dialogue box

r

r

object (not displayed in the accompanying diagram) and has methods

ShowMe, Analysis Terminated, Analysis Proceeds, and Edit Data. Its

role is to inform the user of events or changes in the system requiring

user interaction.

8. Information Box: This object is inherited from the IMS dialogue box

object (not displayed in the accompanying diagram) and has the

TrackProgress method. Its role is to inform the user of events or

changes in the analysis process or system.

9. Restricted PMS Object: The role of this object is to retrieve, edit, and

validate data from the Pavement Management System. It knows the

proper data types and ranges for the PMS data. The data will be used

by the Highway Impact Analysis.

10. Default Highway Impact Data Object: This object retrieves and

validates default data used in every Highway Impact Analysis. The

data may be changed by the user. Its role is to provide validated

default data for a Highway Impact Analysis.

11. Highway Impact Analysis Object: This object has the calculation

methods for performing a Highway Impact Analysis. The data may

be changed by the user. Its role is to perform the calculations

necessary for the Highway Impact Analysis.

55

12. RBA WordPerfect Report Object: This object provides a

WordPerfect document containing graphs, data categories, and

values returned by the analysis, and a template narrative explaining

the various components of the report. Its role is to supply the

necessary reporting formats requested by the user.

3.3.2 Railroad Branchline Abandonment Use Case With Objects

The following narrative presents the description of the Railroad Branchline

Abandonment Use Case provided in Section 3 .2.4 and inserts the Railroad Branchline

Abandonment objects and methods into the narrative. This is done to connect the narrative

with the objects required in the system. It provides an enhanced textual description of the

use case and addresses a concern of some methodologists that textual descriptions need to

be closely linked to object specification. The object and methods are inserted where they

rwould exist in an actualized Railroad Branchline Abandonment Use Case. The objects are

found in curly brackets {} and are balded. The object name is displayed and is followed by a

method.

The Railroad Branchline Abandonment Use Case is further expanded with objects as

follows:

When the transportation planner wants to start the Railroad Branch line

Abandonment use case, he selects an icon supplied by the IMS {RBA Icon.ShowMe} for

this use case. When selected, the icon {RBA Icon.ShowRBAStartWindow} launches a

full screen window {RIA Window.Show Me} displaying the railroad network {Railroad

Network.ShowMe}, the highway network {Highway Network.ShowMe}, and the grain

56

elevator {Grain Elevators.ShowMe} and fertilizer distribution intermodal facilities

{Fertilizer Centers.ShowMe}. The transportation planner chooses a railroad branchline

{Railroad Network.SelectSegment} for analysis by clicking on the endpoints of a

branchline segment on the railroad network. The screen display changes to highlight the

selected branchline {Railroad Network.SelectSegment} and the potential affected portions

of the highway network {Highway Network.GeneratelmpactSegment}. At this point,

transportation planner may do two things: I) terminate the preliminary analysis process

{HIA Window.TerminateAnalysis} or 2) start the analysis process {HIA

Window.StartAnalysis}. If transportation planner terminates the process {HIA

Window.TerminateAnalysis}, he is returned to the first screen display in Railroad

Branchline Abandonment (the railroad network, the highway network, and the grain

elevator and fertilizer distribution intermodal facilities). If transportation planner starts the

analysis process {HIA Window.StartAnalysis}, the following sequence of system events

occur:

I. The system determines {Railroad Network. ValidSegment} if a valid

branchline scenario has been selected. Ifa valid branchline scenario

has not been selected, the system terminates the analysis {Dialogue

Box.AnalysisTerminated}, informs the transportation planner via a

dialogue box, and returns to the first screen display {HIA

Window.ShowMe}. Ifa valid branchline scenario has been selected,

the transportation planner is informed via an informational box

{Information Box.ShowMe} that an analysis scenario has started.

57

I

The informational box tracks {Information Box.TrackProgress} the

progress of the analysis informing transportation planner as the

process continues.

2. The analysis process creates a data structure accessing the Pavement

Management System {RestrictedPMS.RetrieveData} and a default

highway impact database {DefaultHighwaylmpactData}. The

transportation planner is presented a dialogue box

{DialogueBox.ShowMe} allowing 1) editing of the assembled data

{DialogueBox.EditData}, 2) proceeding with the analysis

{DialogueBox.AnalysisProceeds}, and 3) terminating the analysis

{DialogueBox.AnalysisTerminated}. If transportation planner

chooses to edit the data, a window

{DefaultHighwaylmpactData.EditData} appears with the highway

impact data for this analysis whereby transportation planner may edit

the data {EditDataWindow.DisplayData} or return to the last

dialogue box {EditDataWindow.HideMe}. If transportation

planner terminates the process

{DialogueBox.AnalysisTerminated}, the system terminates the

analysis, informs the transportation planner via the dialogue box, and

returns to the first screen display {HIA Window.ShowMe}. If

transportation planner proceeds with the analysis

{DialogueBox.AnalysisProceeds}, a check

58

{Restricted PMS. Valida tePMSData} {DefaultHighwaylmpactDat

a. ValidateData} is done on the data structure to ensure that the data

going to the calculation objects are within valid ranges. If any invalid

data are detected, the IMS suspends execution

{DialogueBox.ShowMe}, notifies transportation planner of the r
invalid data via a dialogue box, and waits for a decision from

transportation planner. The dialogue box presents transportation

planner with the invalid data, the reason why it is considered by the

system to be invalid, a possible result of continuing with the invalid

data, the location of the invalid data, and the choice of either

continuing the analysis process with the invalid data or terminating

the analysis. If transportation planner terminates the process

{DialogueBox.AnalysisTerminated}, the system terminates the

analysis, informs the transportation planner via a dialogue box, and

returns to the first screen display {HIA Window.ShowMe}. If

transportation planner decides to continue with the analysis process

{Dialogue Box.AnalysisProceeds} or no invalid data has been

detected, the analysis process proceeds to step 3. r

3. The calculation of the highway impacts is now done. This consists of

the following steps and is done by the IMS

{Highway ImpactAnalysis.Methods}.

59

3.1 Compute ESAL lives of impacted highways by functional

class.

3.2 Compute portion of highway deterioration attributable to

traffic.

3.3 Compute average cost per ESAL of impacted highways by

functional class.

3.4 Compute average ESALs per VMT by truck type, hwy. class,

and pavement type.

3.5 Compute weighted average truck length of haul and backhaul

factor.
i
-

3.6 Compute incremental ESALs by truck type, highway class,

and pavement type.
i
1:

3.7 Sum incremental ESALs across pavement types.
,__

3.8 Compute annual incremental pavement costs by hwy.class and ~
pavement type.

3.9 Compute highway costs and ESAL factors.

3.10 Generate highway impact reports.

4. When the analysis process has been completed, transportation

planner is presented with a full screen display {HIA

· Window.ShowMe} of the geographical area involved in the analysis

with the highway network highlighted

{HighwayNetwork.Highlightimpacts} according to the results of

60

the analysis. Transportation planner also has available a report in

WordPerfect format {RBAWordPerfectReport.ShowMe}

containing graphs, data categories and values returned by the

analysis, and a template narrative explaining the various components

of the report. The report graphs are also available for screen display
r

{HIA Window.Show Results} through a pop-up menu structure

{PopupMenu.ShowMe}. At this point, Railroad Branchline

Abandonment has been completed, and transportation planner may

close Railroad Branchline Abandonment

{HIA Window.HideMe} or remain at the first screen display in

Railroad Branchline Abandonment.

3.3.3 Object Inheritance in the Railroad Branchline Abandonment Use Case

Several of the Railroad Branchline Abandonment objects are inherited from other

objects. Inheritance is the mechanism whereby objects acquire or inherit the characteristics

and behaviors of another object, a parent object. The characteristics and behaviors of the

parent object may be added, modified, or even hidden in the child object (Booch 1994).

Inheritance is also a form of reuse as one parent object may be used continually to create

one or more child objects, thereby creating a hierarchy of objects. This hierarchy allows the r
inheriting of characteristics and behaviors without programming entirely new entities and

also makes possible the process where any changes to the parent object are propagated

throughout the system to the child objects.

61

In Railroad Branchline Abandonment, the RBA lean object is inherited from the

IMS object and acquires the IMS icon's display attributes and ShowMe method. The IDA

Start Window is inherited from the IMS Window and acquires the IMS Window's display

attributes and ShowMe method. The Railroad Network and Highway Network are both

inherited from the Transportation Network parent object, each acquiring the display

attributes and the ShowMe and HideMe methods. In addition, railroad network inherits the

Select Segment, Valid Segment, and Unselect Segment methods while highway network

inherits the Generate Impact Segment and the Highlightlmpacts methods. The Grain

Elevators and Fertilizer Centers are inherited from the Intermodal Facility Location object.

Both of these objects inherit their railroad locations and the ShowMe and HideMe methods.

Figure 7 shows examples of object inheritance in the Railroad Branchline Abandonment Use

Case.

3.3.4 Encapsulation in the Railroad Branchline Abandonment Use Case

In object-oriented technology, objects contain or encapsulate the data and the data

operations of an entity in the system. Encapsulation separates the external aspects of an

object, which are accessible to other objects, from the implementation details of the object,

which are hidden from other objects. It is the employment of information hiding, the

process of hiding an object's internal structure and implementation detail from the system.

An object may be accessed or used through its interface or specification, but the actual

internal object detail is hidden.

In the Railroad Branchline Abandonment use case, the high level objects are

declarative in nature and shield the analyst from any implementation detail. For example,

62

Figure 7. Examples of Object Inheritance in the Railroad Branchline Abandonment
Use Case Object Specification

(Next Page)

f

63

Grain Elevators

Railroad Locations

ShowMe
HideMe

Fertilizer Centers

Railroad Locations

ShowMe
HideMe

fI\
r

lntermodal Fae. Location

Railroad Locations
Highway Locations

ShowMe
ShowRailroadLocations
ShowHighwayLocations

Railroad Network

XYZ Screen Position
Railroad Network

ShowMe
HideMe
Select Segment
Valid Segment
Unselect Segment

Highway Network

Highway Network
XYZ Position

ShowMe
HideMe
Select Segment
Generate Impact Segment
HighLightlmpacts

f f

Transportation Network

XYZ Screen Position
Railroad Network
Highway Network
Airport Network

ShowMe
HideMe
Select Segment
Valid Segment
Generate Impact Segment
Unselect Segment

Example of Object Inheritance in the Railroad Branchline Abandonment Use Case Objcect Specification

the HIA Start Window object has several attributes and methods, but no implementation

detail is described as part of the object. When HIA Start Window is used in the system,

only the public attributes and methods are known, not anything about how these attributes

and methods are implemented. If the RBA Icon object wants the HIA Start Window object

to perform the Show/Hide Transportation Networks method, it sends a message to the HIA

Start Window object requesting that it be done. The RBA Icon object does not need to

know how the HIA Start Window object implements the method, only that the method is

available. This hides or encapsulates the implementation details of the HIA Start Window

object. All other objects in the system use encapsulation.

In object-oriented analysis, the analyst need only know the attributes and methods of

an object. Encapsulation allows for a high level of system abstraction and eases the

conceptual burden on the analyst by hiding the implementation details of an object.

3.3.5 Reuse of Railroad Branchline Abandonment Objects

One of the major benefits of object-oriented technology is the reuse of objects

(Graham, 1994). This section describes the reuse of the objects specified for Railroad

Branchline Abandonment by the other use cases. The Grain Elevator's object will be

reused by three other use cases: 1) Intermodal Facility Efficiency, 2) Estimate Highway

Investment Costs, and 3) Grain Elevator Modal Split. The Fertilize Center's object will be

reused by the Intermodal Facility Efficiency, Estimate Highway Investment Costs, and

Fertilizer Distribution Facility Location objects. The Railroad Network object will be

reused by the Railroad Branchline Rehabilitation Evaluation use case while the Highway

Network will be reused by the Estimate Highway Investment Costs, Fertilizer Distribution

65

Facility Location, and Railroad Branchline Rehabilitation Evaluation use cases. The HIA

Start Window object will be reused by the Railroad Branchline Rehabilitation Evaluation

use case. In addition, the generic display and dialogue objects not illustrated in the diagram,

but used in Railroad Branchline Abandonment, will be reused throughout all the other use

cases. Additional reuse of these objects may also be identified during the design phase of

IMS development. These objects would also be available for reuse in the development of

other transportation management systems, starting the formation of a library of reusable

transportation objects. Figure 8 shows the high level reuse of objects in the Railroad

Branchline Abandonment Use Case.

3.4 IMS User Centered Object-oriented Analysis vs Data-driven Analysis
r

This section compares and contrasts the IMS user centered object-oriented approach

developed in this chapter with a more traditional design approach, a data-driven approach.

The purpose of this comparison is to highlight the advantages a user centered object

oriented approach offers for IMS development. The comparison is done by considering two

important, generic ideas in system design: 1) understanding the user and 2) managing a

complex system.

3.4.1 Understanding the User

Understanding the user and how the user will utilize the system is fundamental to

successful system design. In the approach adopted by this paper, the use case methodology

of Jacobson, the focus of the analysis centers and remains centered on how the user will use

the system. The development of use cases dictates that the terms of system development

will be on how the system is used. Use cases drive and control system analysis and, when

66

rFigure 8. High Level IMS Reuse of the Railroad Branchline Abandonment
Use Case Object Specification

(Next Page)

67

f
Transportation Network

XYZ Screen Position
Railroad Network
Highway Network
Airport Network

ShowMe
HideMe
Select Segment
Valid Segment
Generate Impact Segment
Unselect Segment

Use Case Use Case Use Case Use Case Use Case

lntermodal Fae.Efficiency Estimate Highway Invest. Grain Elev.Modal Split Fertilizer Dist Fae. Branchline Rehab.

I
~ l

~

~

Grain Elevators
Highway Network

Railroad Locations Railroad Network
Highway Network
XYZ Position iXYZ Screen Position ShowMe

HideMe Railroad Network ShowMe HIA Start Window
HideMe

6- ShowMe Select Segment
XYZ Position

Fertilizer Centers HideMe Generate Impact Segment
Border Type
Color

Railroad Locations
Select Segment Highlightlmpacts

Valid Segment

f ShowMe
ShowMe

Unselect Segment HideMe
HideMe

lntermodal Fae. Location

Railroad Locations
Highway Locations

ShowMe
ShowRailroadLocations
ShowHighwayLocations

A
Show/Hide Trans. Networks
Show/Hide lntermodal Fae.
StartAnalysis
T erminateAnalysis
ShowResults

High Level IMS Reuse of the Railroad Branchline Abandonment Use Case Object Specification

properly used, do not allow developer perceptions of the system to deviate from the user's

model of the system.

In contrast, a developer's data-driven approach would center on the functionality

surrounding data as it relates to a system specified function. This type of analysis

concentrates on the development of the data and the data operations to define the system, r
not the user's model of the system. A data-driven approach concerns itself more with data

than with the user, and the behavior of the user is secondary. Because ofthis emphasis

during system analysis and design, this approach does not understand the user as well as a

user centered approach.

The railroad branchline abandonment analysis and design scenario starts when the
r

user says, "I want to be able to do railroad branchline abandonment." The data-driven

approach asks what data are needed for a railroad branchline abandonment. It follows by

asking what must be done to the data to perform a railroad branchline abandonment. This

system is designed around the data. Design decisions are based upon making the system do

data manipulations. The user centered object-oriented approach asks how does the user do

railroad branchline abandonment, and what do we create to match how the user does

railroad branchline abandonment. This system is designed around the user. Design decisions

are based upon making the system act similarly to how the user acts and models a railroad

branchline abandonment.

For example, in the Railroad Branchline Abandonment use case, the user centered,

object-oriented methodology approached this scenario by determining that the user wanted

to do railroad branchline abandonment and finding out how the user would do it in terms of

69

interaction with the IMS. A data-driven approach would center on what must be done to

the railroad branchline abandonment data to support the functionality requested by the user.

In the first case, this would lead to conceptualizing system entities that have a counterpart in

the user's model of the system. Examples of this are the PMS object, the transportation

networks, and the intermodal facilities objects. The second case would lead to

conceptualizing system entities that are functionality centered on the railroad branchline

abandonment data. Examples of this would be developing data flow diagrams depicting how

the data would flow through the system as it performs a railroad branchline abandonment.

More specifically, continuing with the Railroad Branchline Abandonment use case

example, the user centered object-oriented approach develops entities based upon the user

tasks involved in completing this activity. The IDA Start Window shows what the user

wants to see while doing this activity while the other objects model how the user described

this activity. In a data-driven approach, the developer forms an understanding of the system

from what data manipulations are required to meet user expectations. The one approach

remains focused on the user through the use case model while the other approach is

centered around the data. At the end of the analysis process, one would understand the

system the way the user would use the system while the other would understand the system

by what data functionality the system must do to meet user expectations. The first remains

centered on the user, the second on the use of data. By remaining centered on the user, the

user centered object-oriented approach will more closely follow the user's model of the

system and will lead to a system design based on a more complete understanding of the user.

70

3.4.2 Managing a Complex System

A major challenge to developing large, complex systems is the management of

complexity. The North Dakota IMS will use a significant number of databases and may

interface with several other transportation management systems. Table 4 outlines potential

IMS databases.

Table 4. Potential Intermodal Management System Databases.

IMS Used Database Number of Fields Number of Records

Coal 3 14

Airports 17 100

Transit 14 53

Fertilizer 15 228

Grain Elevators 50 425

Motor Carrier 25 106

Sugar Beet 4 30

Default Highway Data I 12 26

Default Highway Data II 7 16

Elevator Routes 11 1275

Rail Access Route 3 100

North Dakota Waybill 160 15000/year

North Dakota PMS

North Dakota Cross.

27

83

1400

5000

t
;

Included in the table are the basic seven IMS databases introduced in Chapter 1

including the North Dakota PMS used in the railroad branchline abandonment use case, two

Default Highway Databases used in the railroad branchline abandonment use case, the North

71

Dakota Waybill used for tracking commodity shipments, the North Dakota Railroad

Crossings files used for assessing transportation network crossings, and two route files.

This list is not exhaustive, but illustrates the scale and complexity of the system data. The

IMS will also access the GIS and its collection of spatial data, Oracle tables, and Info tables.

In addition, the 40 or more major transactions expected of the system, as indicated in one of

the preliminary surveys, along with the potential interaction with other transportation

management systems, illuminate the complexity of the North Dakota IMS.

Object-oriented analysis and design manages complexity in several ways. One is the

use of abstraction. Abstraction is the elimination of the need to consider the non-essential

details of an entity. The object concept used in object-oriented technology is an abstraction

of an entity through the use of encapsulation and information hiding. Encapsulation draws

together the essential characteristics of an entity, its attributes and behaviors, into an

abstraction, the object. Information hiding conceals the internal implementation details of an

object. Thus, the analyst is removed from the internal complexity of an entity by using the

object concept. In the railroad branchline abandonment use case, several of these databases

are used, but from a conceptual point of view, the use of objects hides the details of

implementing code for utilizing the databases. The PMS database is the PMS object in the

railroad branchline abandonment use case. To the object-oriented analyst, it gets and

validates PMS data. The PMS database is a different concept in a data-driven approach. It

is a collection of records having a series of related fields that need to be accessed and need

to be validated. The abstraction offered by object-oriented technology provides the analyst

a simpler concept with which to build a system. As pointed out by Booch (1991), an

72

object-oriented problem domain decomposition results in fewer conceptual entities when

compared to an algorithmic decomposition common to data-driven approaches, In the

algorithmic decomposition, each operation or method of an object in the object-oriented

decomposition would result in an entity in the decomposition, In the object-oriented

decomposition, the objects would encapsulate various algorithmic decomposition entities

into one abstraction, an object. The fewer entities in the object-oriented approach relieve

the analyst of the additional conceptual burden of more entities in the model.

The scale of the data in the system illustrates another advantage an object-oriented

system would have in managing the complexity of the system as the data changes and

evolves. In an object-oriented system, the object inheritance structure, or hierarchy, allows

the user to easily make changes to all the objects in the system associated with any changes

to the data structure or related calculation or interface changes. One change at the parent

level, incorporating any change or evolution of the data structure, is propagated throughout

its entire object hierarchy in the system. In contrast, a data-driven approach must search the

entire system to find where the data changes will have an effect and make those changes at

each location that is associated with the changed data, This can be a more onerous process

with a greater likelihood of error because of all the individual localized changes possible,

In particular, the user interface of a data-driven system would require more effort in

responding to the evolution of the data structure. The user interface is more directly related

to the data structure in a data-driven system whereas the interface objects in an object

oriented system are more independent of the data structure.

73

The reusability of objects in an object-oriented system also helps to manage the

complexity of the data. If the IMS needs to access and use data from a particular source, it

may use an existing object for that task, making whatever modifications are necessary for

the new object. The new modifications may incorporate attributes or methods from other

existing objects, inheriting them and forming a new, compound object. The data-driven

approach would need to develop a new, separate code module to perform the same activity.

In this situation, the object-oriented system again offers the analyst the conceptual luxury of

dealing with a high level of abstraction with the use of objects rather than thinking about the

level of detail necessary in developing a new code module.

Other object-oriented advantages in managing complexity include the localization of

information in distinct objects in contrast to using variables ofvarious scope in a data-driven

approach. Moreover, the reuse of objects also provides a readily available means of

extending the system and managing the possible complexity involved in any system

extension.

3.5 Railroad Branchline Abandonment Interface Description

The interface description segment of the requirements model is created to provide a

mechanism for assuring that requirements modeling is consistent with the transportation

planner's logical view of the system. The interface description will involve transportation

planner and will simulate the use cases to gain feedback to modify the system to meet user

expectations. Jacobson's methodology is augmented in this paper with a discussion ofuser

centered interface design. This is done in Chapter 4 and includes user interface design

decisions and guidelines to make this part of the analysis process more user centered.

74

I

CHAPTER 4. IMS USER CENTERED PROTOTYPE

4.1 Introduction

This chapter supplements Jacobson's interface description by utilizing user centered

design to support and improve design decisions for a user centered IMS prototype.

Prototyping is the technique of creating a prototype of the main features of a system and

demonstrating these features to the user early in the design process as part of an effort to

keep the design centered on the users. User centered design approaches system design from

the perspective of the potential user, developing user centered design information that may

be utilized during the design process. The user centered design environment and

information developed in this section will be used in making design decisions about the

development of the IMS prototype.

The chapter starts with a section providing some background on user centered

design. Presented first in this section are several approaches to user centered design

followed by subsections on I) interface design, 2) information systems, and 3) IMS

activities. Interface design is included because it is an issue vital to any user centered

discussion. The user interface, to the user, is the system itself, and great care must be

utilized in designing a user interface. The discussion on information systems is presented to

provide context for the IMS which is, in many respects, an information system. The related

IMS activities section describes meetings held with NDDOT officials, Intermodal

Management conferences attended, and evaluations of other state's efforts. The related IMS

activities section also includes additional information about potential users and the user

context.

75

4.2 User Centered Design Context

Norman and Draper (1986) consider several approaches or design methodologies to

the issue ofuser centered system design as applied to computer systems developed for

humans. Each of these design methodologies offers a different perspective for gaining an

understanding of the user and the user's environment. This understanding is fundamental to

user centered design. The first approach is a quantitative one dealing with specific

measurements of the human and the system while the next two methods take more of a

qualitative, subjective approach.

The first approach begins by considering the person or user and the human

information processing structure, utilizing this knowledge as a framework for designing a
r

human-computer interface. This approach was used by Card, Moran, and Newell (1983) in

the development of an applied information-processing psychology of human-computer

interfaces. Card, Moran, and Newell employed cognitive theory and human information

processing performance measures to develop user performance models predicting the

performance of a human-computer system. From these models, they derive ten user

centered system design principles of which two can be applied to a system prototype:

1. Early in the system design process, consider the psychology of the

user and the design of the user interface.

3. Specify the user population.

The remaining eight user centered system design principles address issues appearing later in

the design process.

76

A second approach examines the user's subjective experience and considers how it

may be enhanced by human-computer interaction. It basically asks what the experience is

like for the user. This approach contemplates the idea of "direct engagement" whereby the

user becomes an active participant in the computer application, much like someone watching

a movie may feel that they are having a first person experience rather than being a spectator

(Laurel, 1990). The challenge is to have the user believe they are a participant in the

computer's activity, not someone removed merely directing the computer system. Laurel is

an advocate of this approach, asserting that the cognitive and emotional aspects of a user

and the user's experience must be central to designing for the user. She maintains that

human-computer interface design is an art and will remain so. Laurel writes that an

interface "must have qualities which enable a person to become engaged, rationally and

emotionally, in its unique context." i
' Heckel (1991) promotes this approach and states that "writing friendly software is a I

communications task, and to do it effectively you must apply the techniques of effective

communication; techniques that are little different from those developed by writers,

filmmakers - virtually anyone who has attempted to communicate an idea over the past

decades, centuries, even in some cases millennia" (Heckel, 199 I). He adds that user

centered software design is a communications craft best learned from writers, painters, and

filmmakers whose perspective is one of having an effect on the individual's emotion and

cognition.

The third approach centers on the social context of the computer and the computer's

use as a tool for completing specific user tasks (Brown, 1986). This approach evaluates the

77

user's work tasks, the social and work environment in which the users operate, and the

nature of the process combining the two. The design process attempts to understand this

and to develop a system that integrates into the user's social and work environments. Brown

considers this approach and argues that the best way to influence social change is in the

design of computer systems. He uses the example of distribution lists on electronic mail

systems as a way to impact the behavior of organizations. This approach uses the broadest

context of those discussed.

4.2.l Interface Design Background

The user interface is an important part of any computerized system. It is essential

that any system development thoroughly consider the design and implementation of the user

interface, particularly from the perspective of the user. To the user, the user interface is the

system. The following discussion presents two views of interface design.

Heckel (1991) asserts that computer software is undergoing an evolution similar to

that offilmmaking, from what is presented to how it is presented. He says that writing

software is a communications task and the user interface is the medium of communication.

Heckel's approach emphasizes high level visual thinking and communication, and his design

principles emphasize knowing the user, communicating with the user, and keeping the user

engaged with the program. He continually stresses the idea of communication, particularly

visual communication, and offers this advice to the interface designer:

You must learn to think like a writer: in terms of images, clarity, and impact. I find

it fascinating to see how members of different professions think. Lawyers,

businessmen, accountants, engineers, programmers, and writers all think differently.

78

As a designer of user interfaces, it is crucially important that you observe your

audiences think, so you can design your user interfaces with their thought processes

in mind. You must realize that you are communicating with someone.

Marcus (1992) approaches interface design from a more detailed human-computer

interaction (HCI) perspective. While succinctly describing a comprehensive set of high level

interface design goals, he elaborates most fully on the appearance and interaction attributes

of a graphical screen display. He presents detailed design guidelines for developing effective

spatial displays that can provide users with helpful visual communication constructs.

One ofMarcus' major user interface concerns is the effective use of the space on a

screen display. Marcus (1992) calls proportion and grids the invisible keys to a successful

screen display and defines these concepts as a set of horizontal and vertical lines that divide

the visual field into units that have visual and conceptual integrity. The most effective visual

communication requires that the user perceive a pleasing screen proportion, and careful

consideration should be given to designing the screen layout. A primary objective should be

to develop informational display areas on the screen display that maintain an adequate

spatial relationship with the current screen layout.

Marcus (1992) also addresses the issue of the use of color and calls color the most

sophisticated and complex of the visible language components. He lists several advantages

to using color, including increasing the appeal, believability, memorability, and

comprehensibility of the interface. Disadvantages included the existence of color deficient

users (8 percent of Caucasian males) and the possibility of visual fatigue or visual confusion

from strong or complex color phenomena. His color guidelines indicate that red and green

79

should be used in the center of the visual field, not in the periphery as the edges of the retina

are not particularly sensitive to red and green. He further states that black, white, yellow,

and blue should be used in the periphery of the visual field as the retina remains sensitive to

these colors in the periphery. The following summarizes -Marcus's other recommendations

concerning the use of color.

1. Use blue for large areas, not for text type, thin lines, or small shapes.

2. Use spectral order in color coding (i.e., red, orange, yellow, green,

blue, indigo, violet). Tests have shown that viewers see a spectral

order as a natural order.

3. Use a color area that exhibits a minimum shift in color and/or size if

the color area changes in size. As they decrease in size, color areas

appear to change their value and chroma. Consequently, color

interaction with the background fields becomes more pronounced.

4. Use familiar consistent color codings with appropriate references.

5. Use color for quantitative coding as well as for qualitative coding.

The degree of color change can be linked to some magnitude change

in the displayed process or event.

6. Use high-value, high-chroma colors to attract attention. The use of

bright colors for danger signals, attention getters, reminders, and

cursors is entirely appropriate.

80

7. Command and control colors in menus should not be used for

information coding within a work area, unless a specific connection is

intended.

Another ofMarcus's major graphical display concerns is typography. Marcus (1992)

points out that studies have shown that both legibility and readability can be significantly

improved through careful selection of the type and layout of the material. Rehe (1974)

found that words set in all capitals use up 30 percent more space for variable-width letters

and retard reading speed by 12 percent. Marcus further notes that word shapes are crucial

for efficient reading and capital letters with regular height reduce the variability of the word

shapes presented by uppercase and lowercase letters together.

Marcus (1992) has developed an extensive set of general HCI design principles

derived from his professional practice and adapted from those set forth in Baecker and

Marcus (1990). This section concludes with these specific, low-level principles to interface

design.

1. Legibility: Design the individual characters and symbols of the

textual and graphical vocabulary for an Human-Computer Interface

(HCI) visualization so that they are rapidly and reliably identifiable

and recognizable.

2. Readability: Design the textual components of an HCI so that they

are easy to interpret and understand.

3. Clarity: Design all non-textual components of an HCI so that their

semantics are as unambiguous as possible.

81

4. Simplicity: Include in an HCI only those elements that communicate

something important. Try to be as unobtrusive as possible.

5. Economy: Maximize the effectiveness of a minimal set of techniques

or cues.

6. Consistency: Observe the same conventions and rules for all

elements of an HCI. Be consistent from HCI to HCI. Deviate from

current conventions only when there is a clear benefit to be gained.

7. Relationships: Use visible language elements to show relationships

among those elements of an HCI that need to be linked and to show

lack of relationship among those that should not be linked.

8. Distinctiveness: Use visible language elements to distinguish

important properties of essential components of an HCI.

9. Emphasis: Use visible language to emphasize the most salient

features of an HCI.

10. Focus and Navigability: Use visible language to position the initial

attention of a reader or viewer to the HCI or one of its components,

to direct attention, and to assist in navigating around the material.

11. Screen Characteristics: Select visualization techniques appropriate to

the output display technology.

12. Screen Composition and Layout: Clarify the HCI structure and

emphasize important relationships by carefully organizing the screen

composition through application of a standardized screen layout,

82

through the use of implicit grids, through the application of explicit

and implicit rules, and through the inclusion of appropriate white

space.

13. Typographic Vocabulary: Choose a small number of appropriate

typefaces of suitable legibility, clarity, and distinctiveness, applying

them thoughtfully to encode and distinguish various kinds ofHCI

tokens. Within each typeface, select a set of enhanced letter forms,

punctuation marks, and symbols with which to present the text

effectively.

14. Typesetting: To enhance the readability of the program, to

emphasize what is most salient, and to achieve appropriate focus,

adjust the typesetting parameters of text point size, heading size and

usage, word spacing, paragraph indentation, and line spacing.

15. Symbolism: Integrate appropriate symbols and diagrammatic

elements to bring out and highlight essential HCI structure.

16. Color and Texture: Use appropriate highlighting and low lighting

techniques, such as one or two levels of gray tone as backgrounds, if

they assist in meaningful semantic distinctions.

17. Meta text: Augment the HCI elements of text and graphics with

automatically generated supplementary text and graphics (metadata,

metatext, or metagraphics) that enhance the comprehensibility and

usability of the original elements.

83

18. Simultaneous Views: Provide the ability to view simultaneously a

major "focus" plus additional information on a single screen.

19. Access Facilitation: Provide links and cross-references among these

views, and facilitate navigation through the contents using these

mechanisms.

20. Regularity and Similarity: Maximize the similarity of major kinds of

HCI metatext, e.g., on-line manuals, guides, and quick references or

indices. Maximize the regularity of the location and appearance of

individual items of metatext.

4.2.2 Information Systems Background

An information system may be defined as a structure for providing information to

support the operations, management, and decision-making functions of an organization

(Davis, 1974). The IMS is an information system with built-in modeling, providing

information about various intermodal transportation questions. This section provides a

broader context for considering the IMS as a user centered system within a larger

information-based organization.

Several approaches for information system development are reported in Avison and

Wood-Harper (1990). These are individual methods concerned primarily with technical

problems, strategic implications for organizations, cost reduction, or changes in the nature

and content of the work done by the organization. Avison and Wood-Harper support

Multiview, an approach that draws on research from several other related areas. Multiview

draws on the analysis of human activity systems, socio-technical systems, data analysis, and

84

structured analysis to account for the various points of view of the users involved in a

computerized information system. Avison and Wood-Harper formulate five questions that

Multiview seeks to answer in developing a system specific, practical framework for

information system development.

1. How is the information system supposed to further the aims of the

organization using it?

2. How can it be fitted into the working lives of the people in the organization

who are going to use it?

3. How can the individuals concerned best relate to the computer in terms of

operating it and using the output from it?
r

4. What information processing function is the system to perform?

5. What is the technical specification of a system that will come close enough to

doing the things that you have written down in the answers to the other four

questions?

Kirk (1993) asserts that the most important part of any information system is the

people. People recognize the need for a system, design and implement the system, and use

the system. Any information system originates from people and is developed to assist people

in accomplishing specified, usually work-related tasks. Therefore, the focus for information

system development must be on the most important characteristic of the system, the people.

Kirk's approach more closely approximates a user centered design paradigm with its

emphasis on the people using the system.

85

4.2.3 Related IMS Activities

A series of meetings was held with officials from the NDDOT to discuss and

consider development of the IMS. These meetings addressed several issues including the

potential use of an IMS and emphasized three points in that regard. The first two points

were that the IMS must be quickly seen as being useful and easy to use. This places added

importance on designing an effective user interface to capture the user's interest, much like

the engagement discussed by Laurel (I 990), and on understanding the user to make the

system easy to use. The third point was that the NDDOT, like many other states, does not

think in intermodal terms. North Dakota, again as many other states, remains primarily

focused on the state's highway system and in such a way that relates mainly to highway

engineering and highway developmental projects. The IMS, to be successful, must draw on

that interest and present the IMS within that context. Doing so would draw upon the work

ofBrown (1986), emphasizing the social and work environment of the system, and Avision

and Wood-Harper (1990) who cast information systems in terms of how it will further the

aims of the organization using it.

To gain some insight into other states' efforts, two intermodal transportation

conferences also were attended, and evaluations of California and New Mexico preliminary

design documents were done (Barton-Aschman, 1993; Carter, 1993).

4.3 IMS Computer Use Survey

A survey was developed to gather basic, preliminary information about the user.

The Intermodal Management System Computer Use survey was sent to potential IMS users

at the North Dakota Department of Transportation. The survey was used to facilitate the

86

l

translation of the design principles into design decisions for a user centered IMS prototype.

The four survey categories were I) Computer Use, 2) Graphical User Interfaces (GUI), 3)

Information Use, and 4) Intermodal Transportation. A general comment section was

included at the end of the survey. The survey, while not exhaustive, provides a starting

point for capturing user characteristics necessary for implementing user centered design and

illustrates the process of user centered design.

These categories were selected to determine the users' basic computer skills, their

experience with graphical user interfaces, the kind of information they used, and their

experience and perception ofintermodal transportation. The purpose of the first two

sections, following Card's (1983) design principles I and 3 and Laurel's (1990) interest in
r

the user's experience, is to gain a sense of the users' computer experience. While the

questions in these first two sections are requesting basic information, these sections are also

useful for detecting unusual aspects of the users' computer experience. Section 3 draws on

Avison and Wood (1990) as well as Kirk (1973) and was used to understand how the users

are utilizing information in their work. The fourth category also draws on Avison and Wood

and sought to elicit the current and future perspectives on intermodal transportation. The

last survey category was a comment section.

4.3.1 Survey Participants

The planning division of the NDDOT was selected to be surveyed because that

department was identified by the NDDOT IMS coordinator as having the most active users.

These users included the planning professionals, particularly the transportation planners.

This department also has management personnel and various technical professionals as

87

potential users. This broadened the category of users and offered a wider look at potential

users.

4.3.2 Survey Participation Rate

The Intermodal Management System Computer Use survey was sent to 37 potential

IMS users. Thirty responses were received for a return ratio of 81 percent.

4.3.3 SECTION I. Computer Use

The computer use section of the survey queried users about the type of computer

experience and computer literacy they had. Questions were asked about the hardware and

software that users were familiar with as well as how long they had been using computers

(Figure 9).
r

This part of the survey was used to gain a rudimentary understanding of the users'

computer experience. As pointed out by Card (1983) and Laurel (1990), it is important to

know the users as this

Number ofUsers allows the designer to

25
19

20

15

10

5

0

■ One Year □ Three Yearsllil Five Years ■ More Than Five Years

Figure 9. Years of Computer Experience

build upon the experience

of the user. In this regard,

questions were asked

concerning the type of

computer used, how long

a computer had been used,

how much time is spent on

88

the computer, what operating system is used, and other computer demographic questions

(Figure 10).

The respondents all used a PC with. only 2 (7 percent) also using a workstation and 4

(14 percent) a mainframe. This response indicates that a PC based system will be a familiar

hardware platform as opposed to any significant split between mainframe and PC users. A

large majority of users, 80 percent, had 5 or more years experience with computer with only

3 users being novices (1 year or less).

The operating systems used by the respondents were concentrated on two, DOS and

Microsoft Windows. DOS was the most used operating system with 22 (76 percent)

respondents using it while

Microsoft Windows wasPercent ofUsers

50 ,--------------,,,-;,-....- ...- ""-.,.--~
used by almost half (48

percent) of the users.

However, discussion

subsequent to the survey

indicates that almost all of

the NDDOT planning

I■ 10 or less III 10-20 II Over 20 I division has used Microsoft

Figure 10. Computer Hours per Week Windows.

89

Most (82 percent) respondents used their computers for 10 or more hours a week

with 41 percent spending over 20 hours per week. This indicates that a significant portion

of most users' work week is spent with their computers.

Three common application programs were chosen as the most used or most familiar

software programs: I) word processor with 23 users (77 percent), 2) database with 22 users

(72 percent), and 3) spreadsheet with 18 users (59 percent) (Figure 1 I). Of particular note

are the 10 users (33 percent) who use a CAD (Computer Aided Design) program, a

particularly high percentage for a typical user sample. CAD programs are visually oriented

programs with a spatial dimension reflecting the use of spatial and design information in the

planning division. The use (43 percent) of graphics programs reinforces the spatial and

graphical orientation of the planning division's computer use. The high percentage of

database and spreadsheet users indicate experience with numeric information and

relationships among data

Percent ofUsers elements and types. Only
100-----------------~

one respondent was

familiar with decision

support systems.

Three of the

potential users surveyed

develop computer

■ Mulll-Medl1 □ L•nguagH M Networking ■ App. GeneralortSII S1aUsl!cal [J Doaktop Pub.
EICAD ■ Graphics B]SpreadsheetlE!IDalabau BllWord Procenor programs or information

Figure 11. Software Programs Utilized systems. This question

90

was asked to test the depth of understanding about the computer science involved in an

information system with the hypothesis being that the more depth the user displayed, the

more he would understand the underlying model of an information system. With only three

responses, the survey indicates that the depth of computer science knowledge is not

significant.

4.3.4 SECTION II. Graphical User Interfaces (GUI)

This section focuses on the user's experience and knowledge of Graphical User

Interfaces (GUI) and, in conjunction with Section 4.3.3, will be used to fashion the basis of

selecting an early prototype hardware and software developmental platform. Questions

were asked to determine what experience users had with GUis and what their perceptions

I
'

r
were regarding GUis. Discussion subsequent to the survey indicates that experience with

GUis had grown and expanded.

More than one-half(55 percent) of the users have used a graphical user interface

with one-third (33 percent) of the respondents using MicroSoft Windows. MicroSoft

Windows, by a large margin (3 3 percent versus 3 percent), was the most used graphical user

interface.

A majority of respondents, 53 percent, used a graphical user interface in their work.

Respondents, as a group, demonstrated familiarity with graphical user interfaces.

Of those respondents using graphical user interfaces, almost all (94 percent) found

them to be somewhat or a lot helpful. Seventy-five percent considered GUI "a lot" helpful,

and only one respondent thought GUis were only "a little" helpful.

91

4.3.5 SECTION ill. Information Use

The information use section intended to learn what kind of information was utilized

in the users' work environment. This was done to build on this experience in developing a

prototype incorporating the existing patterns of utilizing information.

Eighty-seven percent of the users reported that they use raw data in their work or

information environment (Figure 12). This suggests that users are analyzing and condensing

original data into more refined information for further analysis. Sixty-three percent of the

users indicated that they use

written reports and maps in
Percent ofUsers

80

60

40

20

0 '----

:;?/:

j

their work. Most respondents

reported using some type of

graphic information in their

work whether it is maps (63

percent), graphs (60 percent),

■ Charts El Statistics Ill Graphs ■ Maps II Text Reports l:r.l Raw Data or charts (43 percent). The

Figure 12. Types of User Information
high use ofgraphic

information indicates familiarity and experience with visual communication. Almost one-half

(4 7 percent) also used statistics at work. f
A minority (40 percent) of the respondents use a computerized information system

like the NDDOT's Pavement Management System (PMS). This question was asked to test

users' experience with transportation management systems. It appears that a sizable

92

minority has experience with other management systems making an introduction to the IMS

easier.

Twenty-one different responses were received describing the type of information the

users found most useful in their work. Of the ways that user information is utilized, analysis

and presentation reports were the most frequent ways (73 percent). Decision making and

writing reports were the second-largest (66 percent) ways, while making charts was third

(57 percent) although still used by a majority of users.

4.3.6 SECTION IV. Intermodal Transportation

This section queried potential IMS users about their experience and perceptions of

intermodal transportation (Figure 13). Of particular interest was determining the attitude

toward the future importance of intermodal transportation.

Only 1 respondent indicated a lot of experience with intermodal transportation while

7 (23 percent) respondents said they had no experience at all. Over 60 percent of the users

replied that they had a little or some experience with intermodal transportation. The

experience base of

Percent of Users intermodal transportation,

r

I■ None □ A tittle II Some ■ A Lot I

Figure 13. Intermodal Transportation Experience

93

while not extensive, is

notable.

Fifty-seven percent

of the users indicated that

they need to consider

intermodal transportation in

their job "somewhat" or "a lot." Only 3 respondents said they do not have to consider

intermodal transportation. All of the responses to a question asking if intermodal

transportation affected their department indicated that intermodal transportation affected

their department "some" or "a lot." All users responding to the question whether intermodal

transportation would become more or less important indicated that it would become more

important.

4.3.7 SECTION V. Comments

Seven survey respondents included comments on their survey. Four of the

comments concerned intermodal transportation and included two comments that either said

intermodal transportation needs to be defined or that intermodal transportation information

is often unavailable. One respondent indicated that intermodal transportation would become

more important because of the requirements ofISTEA. The final intermodal comment

concerned a supervisor/administrator who said he had directed urban highway improvement

projects that got into intermodal issues.

The remaining comments were either a synopsis of that individual's work tasks or a

lengthy comment on how good he considers North Dakota's transportation system.

4.3.8 Survey Discussion

f
f

The survey shows that the potential users of the IMS are knowledgeable, long-time

PC users who are familiar with working with numerical analysis and report development.

Many are familiar with CAD, database, and statistical programs. Most of the potential users

utilized mapping, graphing, and other visual communication techniques in their work while a

sizable minority had used another transportation management system. All the potential

94

l

users thought intermodal transportation was going to be more important in the future, and a

majority had a little or some experience with intermodal transportation. The basic finding of

the survey is that, from a computer use, information use and intermodal transportation

perspective, the IMS should be a PC based system, visually oriented particularly with

respect to displaying transportation networks and will be introduced into an environment

considering intermodal transportation important.

4.4 IMS Prototype Design Decisions

Sections 4.2 and 4.3 provide design principles and basic user information that are

used to make design decisions about the IMS prototype. Section 4.2 presented various

design approaches and design principles for making a user centered system. Section 4.3
r

discovered basic user information that can be incorporated into an IMS prototype.

The railroad branchline abandonment use case is used to illustrate the application of

these design principles and design information. Design decisions about the visual objects in

that use case are presented with the design background source included in brackets.

I. RBA Icon: This icon will be the same size as those used in WordPerfect and

will be positioned in a toolbar identical to WordPerfect's at the top of the

screen display {Marcus (1992), Laurel (1990), use case surveys}. It will have

an image of a railroad branchline partially overlaid with a question mark

{Laurel (1991), Heckel (1991)). The icon will be colored a light gray

identical to the gray of the WordPerfect icons, and the icon image will be

colored black for the branchline with an unobstrusive light maroon for the

question mark {Heckel, Marcus, use case surveys}. The light maroon will be

95

the color identified with the railroad branchline abandonment process and is

selected to attend to the center of the visual field while not being too bright

to signal any need for immediate attention {Marcus}. The icon will be

displayed in a section of the toll bar reserved for use cases whose major

intermodal concept is that ofa railroad {Avison and Wood-Harper (1990)}.

r
2. HIA Start Window: This window will be a full screen display underneath the

top toolbar. It will incorporate the light maroon coloring of the railroad

branchline process at the periphery of the window {Marcus (1992), Laurel

(1990)}. The window will display the transportation networks and

intermodal facilities and will have a blue background for these objects
r

{Marcus}. An optional background color is the background color used by

the CAD program identified in the computer use survey {Laurel, computer

use survey}

3. Railroad Network: This object will use white to display the railroad network

and will use reasonably heavy lines {Marcus (1992)}. An option to display

the railroad network by railroad will be available {Avison and Wood-Harper

(1990), Laurel (1990)}. The colors of the individual railroads will be green

for the Burlington Northern, red for the Canadian Pacific, green for the

dashed line of the Red River Valley and Western, and red for the dashed line

of the Dakota, Missouri Valley and Western. These colors and line types are

taken from the 1994 North Dakota Railroad Map used by various state

96

agencies {Laurel, Marcus}. When a valid railroad branchline is selected, that

portion is highlighted and bold {Marcus}.

4. Highway Network: This object will use yellow to display the highway

network and will use reasonably heavy lines {Marcus (1992)}. When a valid

railroad branchline is selected, the highway impact segment portion is

highlighted and bold {Marcus}. After a highway impact analysis, the affected

highways are highlighted and color coded to display the highway impact

results {Heckel (1991), Laurel (1990)}. The color code will use a spectral

order from a bold red through orange to an orange yellow to scale the

impacts visually {Marcus}. In addition, the affected highway segments will

be widened according to the magnitude of the impact to the highway

{Heckel, Marcus}.

5. Grain Elevators: The grain elevators will be displayed on the railroad

network and will use a white dot at the elevator location. The dot will be

larger than the width of the railroad network lines to be distinguishable, but

will use the same color to show the connection of the elevator to railroad

network {Heckel (1991), Marcus (1992)}. An option will exist to add place

names to the elevators in IO point, white font {Marcus}.

6. Fertilizer Centers: The fertilizer centers will be displayed on the railroad

network and will use a white square at the railroad location. The square will

be larger than the width of the railroad network lines to be distinguishable,

but will use the same color to show the connection of the fertilizer center to

97

railroad network {Heckel (1991), Marcus (1992)}. An option will exist to

add place names to the fertilizer centers in 10 point, white font {Marcus}.

7. Pop-up Menu: The pop-up menu will have the railroad branchline process

colors and will be centered on the screen {Marcus (1992)}. The currently

selected menu item will be highlighted and in 12 point, white font {Marcus}. f
r

8. Dialogue box: The dialogue box will have the railroad branchline process

colors and will be centered on the screen {Marcus (1992)}. If the analysis

terminated message is displayed, the message and a termination symbol will

be in red {Marcus}. If the invalid data message is displayed, it will be in red

{Marcus}. The analysis proceeds message will be green, and the edit data

message will be black {Marcus}.

9. Information box: The information box will have the railroad branchline

process colors and will be centered on the screen {Marcus (1992)}. The

track progress message will be ·black with a blue moving sliding gauge to

display the percentage of analysis completed {Laurel (1990), Heckel

(1991)}.

10. Graphs: The graph object will be incorporated from the main graphic

program utilized by the users {Laurel (1990), computer use survey}. Colors

in the graphs will use a consistent scale and use the same color across

various graphs measuring the same data category {Laurel, Marcus (1992)}.

This object will be centered on the HIA screen window and have 2/3 of the

98

I

HIA screen area {Marcus}. The icon image and maroon color will be used

as a process identifier.

11. Reports: The reports will be in WordPerfect format {Laurel (1990), Marcus

(I 992), use case surveys}. They will be displayed on the screen as

WordPerfect documents.

4.5 Conclusion

This chapter presented user centered design principles and design information to

make the IMS prototype a more effective analysis and design tool. By taking advantage of

these user centered guidelines, the IMS prototype will present a more visually appealing and

constructive user interface. The IMS prototype is an important part of system development,

and the effort to make it as productive as possible at the earliest opportunity in the process

will lead to more effective system design.

99

CHAPTER 5. IMS PRELIMINARY SYSTEM IMPLEMENTATION ANALYSIS

5.1 Introduction

This chapter presents the results of a preliminary implementation analysis and survey

of potential software development systems and high level IMS functionality done as part of

an interim IMS report to the NDDOT. This analysis was done to provide the NDDOT with

preliminary background information with which to assess the costs and alternatives available

for developing the IMS. Three major categories for development were considered: 1)

Database Management Systems (DBMS), 2) Object-Oriented Database Management

Systems (OODBMS), and 3) Geographical Information Systems (GIS). Several application

development environments were evaluated across these categories. All but one of those

application development environment systems used the more structured, traditional type of

programming and design. An additional preliminary analysis of an system based on object

oriented technology, but not confined to the three categories, was developed.

The OODBMS category and the object-oriented application development

alternative are presented first, followed by the evaluation of four traditional structured

programming application development alternatives, two DBMS systems, and two GIS

systems. The last alternative outlined is the custom-built system based on object-oriented

technology.

These alternatives are presented within the context of a user centered IMS as an

information management system, designed to provide a system supporting the

administration and to evaluate the state's intermodal transportation system. The alternatives

presented here vary in sophistication and their capacity to support intermodal transportation

IOI

planning. The specific alternatives are 1) a Delphi-based Object-oriented Database

Management System, 2) a dBASE Database Management System, 3) a Visual Basic

Database Management System, 4) a Level I ARC/INFO application, 5) a Level II

ARC/INFO application, and 6) an object-oriented custom-built system.

5.2 Object-oriented Database Management System

Object-oriented database management systems integrate database technology with

object-oriented programming technology. The one presented here is Delphi.

5.2.1 Delphi : An Object-oriented Database Management System

Delphi is an object-oriented programming environment based upon the Object Pascal

language. It provides database tools for building database applications, design tools, and an

application development environment for Microsoft Windows.

5.2.2 System Overview

A Delphi-based object-oriented database management system would provide the

functionality typical of database management systems. In a Delphi-based program,

however, the underlying system structure would be represented as objects. The data could

be encapsulated into objects containing the database table data and the program code to

perform the calculations and manipulations of the data. These objects would be available at

runtime for the program to create new objects and abstract data types to respond to state

changes in the program as the program models a user centered process.

As a Micro Soft Windows-based program, Delphi provides for the development of a

graphical user interface (GUI) having available the resources of the MicroSoft Windows

Application Program Interface (API). Delphi also utilizes Object Linking and Embedding

102

(OLE) technology which provides an opportunity to use the capabilities of other computer

programs, such as spreadsheets or word processors. OLE would provide the user access to

existing data outside the scope of the IMS and would be a useful enhancement to IMS

functionality.

This system would use the XBASE databases. Desktop databases such as Paradox,

FoxPro, dBASE, and others may be used. Delphi also supports a client/server edition that

works with remote database servers such as Oracle, Sybase, and others. Open Database

Connectivity (ODBC) sources may be used for both the desktop and client/server editions.

Delphi would be used to develop an interface to these databases.

5.2.3 System Description

The system would be designed to include the following functionality:

• Summary statistics for each database. This includes the standard database

statistics and any user-defined statistics. The system would use views and

queries plus the additional capability of an enhanced screen display using the

Delphi environment.

• Report generation. Custom-designed reports could be developed based upon

existing database tables and queries. These reports could be displayed on the

screen, faxed or electronically sent to another user, or sent to a local printer.

• Query system development. The Delphi program's query system would

require the development of a menu-driven interface to perform query

operations and would require significant resources to develop. Alternatively,

an SQL interface to a database system like Oracle could be designed.

103

• Graphs. A set of pre-defined graphs could be developed providing the

analyst with an effective visual display of information. Third-party graphing

products could be used or accessed allowing more flexibility in designing an

effective graphing program component.

• Database maintenance. The database may be maintained at the user site.

Common operations, such as adding, editing, or deleting data, would be

performed as menu selections or at the custom-designed screen level. The

major issue of keeping all instances of the database current must be

considered and addressed if this option is developed. In an object-oriented

programming system, the capacity to create new database table objects could

be utilized during database maintenance.

5.2.4 Database System Structure

The system data structure would include the following databases:

Airports.dbf Airport Information

95MCDir.dbf Motor Carrier Directory

Elevat.dbf Elevator Grain Movement Information

NDLTL.dbf L TL Trucking Directory

Coal.dbf Coal Mine Database

Fertiliz.dbf Fertilizer Database

Transit.dbf Transit Information

104

5.2.5 Modeling

Modeling development would be based upon the object orientation of the

programming system. Specific objects and new data types (data abstraction) could be

created taking advantage of object technology's ability to more closely model the real world

system. The resource costs may be higher initially than other systems if the developers need

to learn the object-oriented paradigm. However, developing program objects containing

modeling capabilities would be less restrictive conceptually than in other systems evaluated

here. Sophisticated modeling could be developed, but at a higher cost than the ARC/INFO

systems.

5.2.6 GIS

Very limited GIS functionality would be available unless extensive use ofan

additional language, for instance C++, is incorporated at a lower level in the system.

5.2.7 User Interface

The user interface would be an event-driven graphical user interface. Customized

screens would be developed for displaying data from the database and the various

performance measures. The Delphi developmental environment lends itself to effective GUI

design and rapid GUI prototyping.

5.2.8 System Maintenance and Evolution

A process to maintain the underlying system software and database would need to be

established. In addition, any evolution of the system, particularly the database, should be

done with the objective of eventual incorporation into a more sophisticated GIS and

modeling system.

105

5.2.9 Summary

A Delphi or another object-oriented programming system should be considered if the

IMS becomes complex with the potential for significant evolution. An object-oriented

software system could be designed to reduce the complexity with the use of independent

objects. These independent objects can be used to manage program complexity and can be

reused and modified to create new objects in the system as the system evolves. However,

for a large IMS, an object-oriented development system offering more flexibility and

extensibility should be considered. It is important to note that this system would not offer

as much decision support as other alternatives.

5.3 DataBase Management Systems: Level I

A database management system provides the functionality to support and use a

relational database. Two levels of possible development are presented here.

5.3.1 dBASE Database Management System

dBASE is a program long used by the NDDOT and is evaluted here in consideration

of the advantage the extensive knowledge ofdBASE would provide.

5.3.2 System Overview

A dBASE database management system would be a standard relational database

information system. It would incorporate the intermodal databases into a dBASE application

and provide users with conventional database access to the intermodal database. The

system would support data queries through the dBASE query system and would use

customized dBASE data display screens. DOS and MicroSoft Windows versions could be

developed as well as a networked version.

106

L

The system would provide views of the intermodal inventory and any predefined

intermodal performance measures. The intermodal analyst would be able to use this system

to access basic, static data. It is being presented as a typical database management system

developed in an environment familiar to many NDDOT users. This takes advantage of

existing NDDOT skills and allows these users to utilize the database in their own dBASE

environment.

5.3.3 System Description

The system would be designed to include the following functionality:

• Standard dBASE functionality. The system would allow easy access to the

existing, underlying dBASE functionality. A skilled dBASE user could use

this function to go directly to the dBASE environment.

• Summary statistics for each database. Predefined statistics could be

developed for some or all of the databases. These statistics would include

summation, averages, weighted averages, and others. This would provide

the analyst with quick access to a set of system defined statistics requiring

the development of database views and queries.

• Report generation. Custom-designed reports could be developed based upon

existing database tables and queries. These reports could be displayed on the

screen or sent to a local printer.

• Query system development. The program's query system could adopt one or

more of three different approaches. The first approach would drop the user

into the dBASE environment for performing queries. This approach uses

107

fewer developmental resources, but requires familiarity with using dBASE.

A second approach would be to develop an interface to the dBASE query

system that reduces, but does not eliminate, the need for dBASE familiarity.

The third approach is the development of a new, menu-driven interface to

perform query operations.

• Graphs. A set of system-defined graphs could be developed, particularly for

a MicroSoft Windows version of the software. This would provide the

analyst with a more visual source of information.

• Database maintenance. The database may be maintained at the user site.

Common operations, such as adding, editing, or deleting data, could be

performed in two ways. The first, requiring dBASE familiarity, would drop

the user into the dBASE environment for these operations. The second,

requiring more resources to develop, would perform these operations at the

custom-designed screen level. The major issue of keeping all instances of the

database current must be considered and addressed if this option is

developed.

5.3.4 Database System Structure

r
The database structure would be designed to allow access to individual databases

(those outlined in Section 2.2.3) and to support utilization of all databases as a whole. The

structure would provide the framework for the integration of the databases to facilitate

queries and reports based upon one or more of the databases.

108

L

The design of the database system would especially consider the geographic

reference points common to the databases and transportation analysis. An example of this

would be the development of relationships among the databases based upon a geographic

region (county) or location (latitute; longitude) that expedites the query system.

5.3.5 Modeling

Modeling would have limitions in this system. Considering developmental

resources, it may be limited to sensitivity analysis of selected performance measures. This

would be accomplished by manipulating the data elements serving as parameters into the

performance measure analysis. Additional models would require the development of

separate program modules accessing the database and perfoming calculations and analysis.

Sophisticated modeling, such as routing algorithms, facility location and other analytical

procedures, do not readily lend themselves to this system when compared to other

alternatives. The results of these models would be represented in graphs or reports.

5.3.6 GIS

There would be no GIS functionality.

5.3.7 User Interface

The user interface would consist of a graphical menu structure accessing the

system's functionality. The MicroSoft Windows version would incorporate a more truly

graphical user interface. Customized screens would be created for displaying data from the

database and the various performance measures.

109

5.3.8 System Maintenance and Evolution

A process to maintain the underlying system software and database would need to be

established. In addition, any evolution of the system, particularly the database, would be

done with the objective of eventual incorporation into a more sophisticated system

5.3.9 Summary

The dBASE management system would be the most elementary system presented

and also the least expensive to develop. This system would be a bare bones approach

providing a rudimentary information system managed from a database perspective. It

would essentially be an information tool, not an analysis tool, in support of transportation

planners and decision makers. As such, it would not be as effective a decision support

system as other alternatives.

5.4 DataBase Management Systems: Level II

Level II of the database management systems provides a more sophisticated system.

5.4.1 Visual Basic Database Management System

Visual Basic is an application development system providing rapid prototyping and

strong connectivity to MicroSoft Windows. Numerous third-party software solution

providers have extended Visual Basic by developing many add-on components.

Functionality not inherent to Visual Basic is readily available, facilitating development in this

environment.

5.4.2 System Overview

A Microsoft Windows-based Visual Basic database management system would have

many of the characteristics of the dBASE system. However, much more is possible in Visual

110

l

Basic. A major difference between the two lies in the development of the user interface or

graphical user interface (GUI). In a Visual Basic system, or a similar developmental

environment such as Powerbuilder, the GUI has more potential for development. Visual

Basic and related add-on developmental tools provide a richer set of possibilities to meet

user expectations for the user interface. Visual Basic is more closely coupled with Object

Linking and Embedding (direct active program access to other programs such as

MicroSoft's Word or Excel) when compared to dBASE for MicroSoft Windows. Object

Linking and Embedding (OLE) provides an opportunity to use the capabilities of other

computer programs and may be useful for accessing spreadsheets or word processors.

This system would use the dBASE databases. Visual Basic would be used to

develop an interface to these databases.

5.4.3 System Description

The system would be designed to include the following functionality:

• Summary statistics for each database. This system would have the same

functionality as described in Section 5.3.1 plus the additional capability ofan

enhanced screen display using the Visual Basic environment.

• Report generation. This system would have the same functionality as

described in Section 5.3.1.

• Query system development. The Visual Basic program's query system would

require the development of a new, menu-driven interface to perform query

operations. This would use significant resources to develop. Alternatively,

an SQL interface to a database system like Oracle could be designed.

111

However, a third-party product could be investigated to provide this

functionality at a reasonable cost.

• Graphs. This system would have the same functionality as described in

Section 5.3.1. However, more third-party graphing products could be used

or accessed allowing more flexibility in designing an effective graphing

program component.

• Database maintenance. The database may be maintained at the user site.

Common operations, such as adding, editing, or deleting data, would be

performed as a menu selection or at the custom designed screen level. The

major issue of keeping all instances of the database current must be

considered and addressed if this option is developed.

5.4.4 Database System Structure

The database structure would be designed as described in Section 5.3.1.

5.4.5 Modeling

Modeling would be limited in this system, but not as limited as in the dBASE

system. Developing program modules containing modeling capabilities would be less

restrictive as in the dB ASE system, and representing the results of a model would be

enhanced because of a more flexible GUI environment. Again, as in the dBASE system,

sophisticated modeling could be developed, but at a higher cost than other alternatives.

5.4.6 GIS

This system would have very limited GIS functionality at a high resource cost.

112

5.4.7 User Interface

The user interface would be an event-driven graphical user interface. Customized

screens would be developed for displaying data from the database and the various

performance measures. The Visual Basic developmental environment lends itself to effective

GUI design and rapid GUI prototyping, streamlining the developmental process.

5.4.8 System Maintenance and Evolution

A process to maintain the underlying system software and database would need to be

established. In addition, any evolution of the system, particularily the database, can be done

more easily than the dB ASE system, particularly with the objective of eventual

incorporation into a more sophisticated GIS and modeling system.

5.4.9 Summary

The Visual Basic management system would be similar to the dB ASE system. It is

presented here to consider the possibility of more extensive user interface development and

some limited potential for better modeling support. This system would not include the

underlying, built-in functionality of an application developed in dBASE thereby increasing

some development costs. However, when compared to the dBASE system, it offers some

areas of improvement while making development more difficult in others. In considering

this alternative, the importance of the user interface will be a primary concern. Overall, r
this system would not offer as much of a decision support system as other alternatives.

113

5.5 GIS-based Systems

The North Dakota Department of Transportation is supporting the development of

an ARC/INFO Geographical Information System (GIS). This system could be used to

develop an IMS. Two levels of system development are presented here.

l5.5.1 Level I ARC/INFO System
!

The NDDOT has installed and is continuing development of an ARC/INFO GIS

system. This Level I evaluation is presented to take advantage of this system.

5.5.1.1 System Overview

An ARC/INFO IMS system would be an integrated geographic information system.

As presented here, a Level I system would provide all the GIS capabilities common to
L

ARC/INFO applications and systems. In the Level I system, the transportation analyst

would have an underlying relational database management system containing geographic

attribute information linked to a sophisticated mapping display. This combination provides

an excellent visual information source for evaluting and analyzing transportation networks

and transportation facility location. The Level I system would also take advantage of

ARC/INFO's built-in modeling capabilities and provide intermodal transportation modeling

applications written in ARC Macro Language (AML).

5.5.1.2 System Description

The system would be designed to incorporate the following ARC/INFO GIS

mapping and spatial analysis capabilities:

• Link-node topology for representing/displaying transportation networks.

• Route and network segment calibration and delineation.

114

• Multiple facility location displays.

• Multiple GIS layering representing segments of the transportation network.

• Least-cost path determinations.

• Transportation resource allocation.

• Network modeling.

• Vehicle routing analysis.

• Spatial relationships representation.

• Geographic and database attribute display.

The system also would include the following:

• Summary statistics for each database.

• Enhanced report generation . I• Geographic query system development.

• Graphs.

• Database maintenance. The database may be maintained at the user site. The

major issue of keeping all instances of the database current must be

considered and addressed if this option is developed.

5.5.1.3 Database System Structure
I

The database structure would be designed to integrate into the ARC/INFO GIS and

spatial analysis capabilities. The database would be formatted and structured as a spatial

database. Data conversion from the dBASE databases would be an important part of the

process of defining this database system.

115

5.5.1.4 Modeling

Modeling would be extensive in this system. In particular, the spatial analysis

capabilities provided by the software environment would be utilized to develop specific

intermodal transportation applications. ARC/INFO clearly provides the most capable

modeling environment considered by this analysis.

5.5.1.5 GIS

Extensive GIS functionality would be available in this system. Multiple layers of the

intermodal transportation network would be developed providing the analyst with

sophisticated visual displays. This would give the analyst a set of comprehensive visual

tools to evaluate, examine, and utilize the intermodal network. ARC/INFO GIS capabilities

provide an opportunity for using visual information unmatched by the other systems

analyzed in Chapter 5.

5.5.1.6 User Interface

The user interface would consist of three different levels. A command-level

interface is available, and AML can be used to create a custom-designed graphic user

interface. A third level is the built-in ARC TOOLS, a GUI interface to the system. In

addition to the possibility of third party interface applications, there is a rich variety of user

interface selections.

5.5.1.7 System Maintenance and Evolution

System maintenance and evolution would require an ARC/INFO specialist. The

specialized nature of the system would require a more extensive maintenance process, but

116

should be considered in the context of the much richer functionality of an ARC/INFO

system.

5.5.1.8 Summary

This system gives the intermodal analyst a variety of analytical tools inside a

sophisticated visual display system. ARC/INFO does provide an extensive environment for r
the development of a decision support system. However, the development of this type of

decision support system will have a higher resource cost than the alternatives. The inclusion

of GIS and modeling capabilities in an IMS do provide many analytical possibilities and

should be strongly considered.

5.5.2 Level II ARC/INFO System
I

A Level II ARC/INFO system would include all the capabilities of the Level I

ARC/INFO system. A Level II system would extend the modeling capabilities of the IMS.

Various analytical models, now under consideration, would be developed to give the user

additional analytical support. These models, drawing upon some of the unique

characteristics of the underlying intermodal database, would be custom designed and

focused on providing a decision support environment more specific for an IMS in North

Dakota. While involving more resources to develop, it provides more for the transportation

analyst and decision maker.

5.6 Object-oriented Software System

Object-oriented programming utilizes a different approach to the development of

software and is discussed to provide a background for describing some potential advantages

in using this type of programming environment. In the traditional, procedure-oriented

117

programming approach, a software system provides an algorithm or a series of specific steps

to be performed. In the object-oriented approach, the program describes a system of fully

functional independent entities called objects which are allowed to interact with each other.

Object-oriented approaches can make large programs simpler, easier to change, easier to

maintain, extensible, and reusable.

The objects in an object-oriented system are the basic units of the system and

encapsulate both data and operations for manipulating that data within one program unit.

An object's internal structure may include new abstract data types specific to the system the

program is modeling and mechanisms for creating new objects with identical or similar

characteristics. This object and programming structure gives the software the potential to

model a system more closely than the traditional approach and also provides a mechanism

for the evolution of the software to create and modify new objects in the system.

The advantages of using an object-oriented programming approach include code

reuse and a programming model that may be used to reduce the complexity in a system.

Code reuse in object-oriented programming is provided by the ability to reuse user-defined

abstract data types and the capability to create new objects from existing objects. The object

programming model provides a way to design a software system that parallels the objects in

a real world system and can reduce complexity by the inclusion into the system of

independent objects. These independent objects provide the developer the capability of

isolating working code and, through inheritance, creating new independent objects with

similar characteristics.

118

This programming approach should be considered if the IMS system evolves into a

large, complex system that models a system undergoing continuous evolution and if the

software system will require a lot of maintenance. The object-oriented system presented

here will be based upon an object-oriented programming language such as C++. Other

object-oriented programming systems, such as Powerbuilder, are available. If the IMS

system will be developed accessing GIS functionality, a programming language such as C++

should be considered for object-oriented system development and modeling. C++ would be

used for low level programming providing or connecting to GIS functionality.

r

119

CHAPTER 6. CONCLUSION

This paper sought to accomplish three objectives, each to be used in the

development of a transportation analysis software system. The first objective was to select a

user centered object-oriented analysis and design methodology for systems analysis of the

software. To accomplish this objective, a survey and an examination of object-oriented f
analysis and design methodologies were done. The first step in the survey process was the

development of the basic principles and concepts of object-oriented technology. This step

included an introduction to object-oriented technology, a discussion of the major object

oriented concepts, and an overview of the historical evolution of the technology. Second,

the evaluation of several, major object-oriented analysis and design methodologies was

completed. This evaluation considered the main analysis and design approaches and

techniques of each methodology within the context of user centered software design. Third,

a user centered object-oriented analysis and design methodology was selected, Jacobson's

use case approach.

Jacobson's use case methodology focuses immediately on the user. This is in

contrast to the other methodologies that were evaluated and is done with the development

ofuse cases. Use cases are the analytic technique of identifying what and how the user will

use the system. A use case is developed by first identifying the actors of a system and then

determining their uses of the system.

This approach is user centered because it initiates the analysis with the user from the

user's perspective and remains centered on the user as the use case drives all the analysis

and design modeling. All the analysis and modeling validation is done against the use case

121

model. The entire software system and systems analysis is developed from the user's

perspective.

Others, including leading object-oriented methodologists James Rumbaugh (1994)

and Grady Booch (1994), have also recognized this approach's value as a user centered

methodology. Rumbaugh and Booch are incorporating the use case into their upcoming

Unified Method and recommend its use as a user centered approach to object-oriented

analysis and design.

A second objective of the study was to initiate the application of the use case

approach to the Intermodal Management System (IMS), the transportation analysis system

being considered for development. The application of the use case approach was done at

two system levels. A high level analysis was used to identify the actors in the system and six

high level use cases. A lower level system analysis included a more detailed use case

example which was developed to provide an example of an analysis of greater depth.

The first step in initiating the application of the use case approach to the IMS was

the identification of the system actors. The study augmented and expanded upon Jacobson

by introducing a priority ranking of the actors. The identification of the IMS use case actors

revealed that one primary actor, the transportation planner, would dominate system

utilization. The priority ranking of the actors illuminated this and allowed for use case

development to concentrate on the transportation planner.

The second step in the application process was the identification and the

development of the use cases. This was done with interviews and background surveys of

the primary actor as well as the utilization of an interim IMS report to the North Dakota

122

Department of Transportation. Six high level use cases were developed. The American

Management System stratification of use cases discussed in Chapter 2 was adopted to

expand and detail the use cases while remaining strongly focused on the user, This

stratification was utilized to provide greater depth to an example use case connecting the

use case more closely to object analysis and design.

The third step in the application process was the development of object class

specifications for the expanded use case. Twelve object classes were developed and were

used to demonstrate the inheritance, encapsulation, and reuse of IMS objects. These objects

were also used in a comparison of an object-oriented approach to a data-driven approach.

The comparison was done to highlight the possible benefits the application ofuser centered

object-oriented technology offered and considered the issues of understanding the user and

managing system complexity. The possible benefits include a greater understanding of the

I
user by development from the user's perspective, the management of system complexity I

through the use of abstraction, and the extensibility and reusability of objects.

The final step in the application process was making user centered design decisions

for an IMS prototype. The prototype process is used by many. design methodologies to

evaluate early analysis and design decisions. This study extended and enhanced the

prototype process by developing a user centered design framework for the IMS prototype.

This framework included examining several user centered design approaches, including

those that address the issue of interface design and human-computer interaction, as well as

developing a computer use survey of the likely IMS users. These user centered design

principles were applied by making IMS prototype design decisions for the example use case.

123

These user centered design decisions will result in a more effective prototype, thereby

enhancing the application process.

The last objective of the study was to survey alternative software development

systems for possible IMS implementation. To accomplish this objective, the North Dakota

Department of Transportation was provided with an assessment of alternatives for IMS

software development. A series of six potential software systems were examined and

presented for NDDOT's consideration when evaluating the factors affecting IMS

implementation.

The three major categories evaluated for possible IMS software development were

!) Database Management Systems (DBMS), 2) Object-Oriented Database Management

Systems (OODBMS), and 3) Geographical Information Systems (GIS). Several application

development environments were examined across these categories. An additional

preliminary analysis of a system based on object-oriented technology, but not confined to

the three categories, was developed.

The OODBMS category and the object-oriented application development

alternative were presented first, followed by the evaluation of four traditional structured

programming application development alternatives, two DBMS systems, and two GIS

systems. The last alternative outlined was the custom-built system based on object-oriented

technology.

These alternatives were presented in response to the North Dakota Department of

Transportation, for its consideration of the alternatives possible for IMS implementation.

124

As such, they formed part of the user centered design process by responding to the user's

perspectives and requirements.

The author also formed several conclusions concerning the applicability of the

paper's approach tothe development ofan Intermodal Transportation System. First, the

utilization of a user centered approach adopted by the study is recommended. The

transportation professional, working inside an intermodal context, will be presented with a

variety of transportation analysis scenarios and tasks. The adoption of a user centered

design approach will result in a software system concentrated on the presentation and

completion of these tasks rather than on the complexity of determining how the data are

manipulated by the system to perform a myriad of tasks. This focus will minimize the effort

required by the transportation professional to use the system.

Second, the author recommends that object-oriented technology be used only for

large, complex installations of an IMS. The benefits derived from object-oriented

technology are most noticeably gained when the complexity of a system is a major issue.

The IMS, with the many different databases and analysis scenarios, has the potential to be a

complex system; and adopting object-oriented technology for large IMS installations offers

substantial benefits. However, a small IMS installation would not benefit from object

oriented technology.

Third, the author concludes that departments of transportation can benefit from the

development of an object-oriented IMS. Object-oriented technology provides an effective

vehicle for software evolution and, as a IMS matures, will meet the need for transportation

professionals to adopt emerging analytical standards and practices. An object-oriented IMS,

125

with a user centered design, will provide an efficient software system adapted to meet the

changing requirements of intermodal transportation analysis.

126

I

BIBLIOGRAPHY

Abbott, R. J. 1983. Program Design by Informal English Descriptions. Communications of

the ACM, Vol. 26, No. 11, pp. 882 - 894.

Armour, F., Boyd, L., and Sood, M. 1995. Use Modeling Concepts for Large Business

System Development. American Management Systems, OOPSLA Workshop on

Use Cases, Preliminary Program, October 15, 1995, Austin, Texas,

http://www.unantes.univ-nantes.fr/usecase/rootExtension.html.

Avison, D. and Wood-Harper, A. 1990. MUL TIVIEW: An Exploration in Information

Systems Development. The Alden Press, Oxford, England.

Baecker, R. and Marcus, A. 1990. Human Factors and Typography for More Readable

Programs. Addison-Wesley Publishing Co., Reading, Massachusetts.

Barton-Aschman Associates, Inc. 1993. Study Design for the New Mexico Statewide

Intermodal Transportation Plan. New Mexico State Highway and Transportation

Department, Santa Fe, New Mexico, June 9, 1993.

Berard, E. 1993. Essays on Object-Oriented Software Engineering, Volume 1. Prentice

Hall, Inc., Englewood Cliffs, New Jersey.

Berard, E. 1995. Be Careful With "Use Cases." The Object Agency, Inc., Gaithersburg,

Maryland, http://www.toa.com/pub/use case. txt.

Booch, G. 1982. Object Oriented Design. Ada Letters, Vol. I, No. 3, pp. 64-76.

Booch, G. 1986. Object Oriented Development. IEEE Transactions on Software

Engineering, Vol. SE-12, No. 2, February 1986, pp. 211 - 221.

127

!_

http://www.toa.com/pub/use
http://www.unantes.univ-nantes.fr/usecase/rootExtension.html

Booch, G. 1991. Object-Oriented Analysis and Design with Applications. The

Benjamin/Cummings Publishing Company, Inc., Redwood City, California.

Booch, G. 1994. Object-Oriented Analysis and Design with Applications. Second Edition.

The Benjamin/Cummings Publishing Company, Inc., Redwood City, California.

Booch, G. and Rumbaugh, J. 1995. Unified Method for Object-Oriented Development,

Documentation Set, Version 0.8. Rational Software Corporation, Santa Clara,

California.

Borland International Inc. 1995. Delphi for Windows. Borland International, Scotts

Valley, California.

Borland International Inc. 1995. dBASE for Windows. Borland International, Scotts

Valley, California.

Brinkkemper, S., Hong, S., Bulthuis, A., and van den Goar, G. 1995. Object-Oriented

Analysis and Design Methods. University ofTwente, Enschede, The Netherlands,

http://wwwis.cs.utwente.nl/drnrg/OODOC/oodoc/oo.html.

Brown, J. S. 1986. From Cognitive to Social Ergonomics. In User Centered System

Design: New Perspectives of Human-Computer Interaction, Norman, D. and·

Draper, S. Editors. Lawrence Erlbaurn Associates, Hillsdale, New Jersey.

Card, K., Moran, T., and Newell, A. 1983. The Psychology of Human-Computer

Interaction.. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Carter, D. 1993. Development ofan Intermodal Transportation Management System for

California. Book, Allen & Hamilton, Los Angeles, California.

128

http://wwwis.cs.utwente.nl/drnrg/OODOC/oodoc/oo.html

Coad, P. and Nicola, J. 1993. Object-Oriented Programming. PT R Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey.

Coad, P. and Yourdon, E. 1991a. Object-Oriented Analysis. Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey.

Coad, P. and Yourdon, E. 1991b. Object-Oriented Design. Prentice-Hall, Inc.,
r

Englewood Cliffs, New Jersey.

Dahl, 0. and Nygaard, K. 1966. SIMULA -- an ALGOL-Based Simulation Language.

Communications of the ACM, Vol. 9, No. 9, pp. 671 - 678.

Davis, G. 1974. Management Information Systems: Conceptual Foundations, Structure

and Development. McGraw-Hill, New York.

Entsminger, G. 1990. The Tao of Objects. M&T Books, New York.

Environmental Systems Research Institute, Inc. ARC/INFO - An Integrated Answer for

Transportation Planning and Management. Redlands, California.

Graham, L 1994. Object-Oriented Methods, Second Edition. Addison-Wesley,

Wokingham, England.

Hansen, T. and Miller, G. 1995. Requirements Definition and Verification Through Use

Case Analysis and Early Prototyping. OOPSLA Workshop on Use Cases,

Preliminary Program, October 15, 1995, Austin, Texas,

http:/ /www. unantes. univ-nantes. fr/usecase/rootExtension. html.

Heckel, P. 1991. The Elements of Friendly Software Design, The New Edition. SYBEX,

Inc., Alameda, California.

129

HOOD Working Group (1989). HOOD Reference Manual. Issue 3.0 European Space

Agency, Noordwijk, The Netherlands.

Jacobson, I. 1992. Object-Oriented Software Engineering, A Use Case Driven Approach.

Addison-Wesley Publishing Company, Reading, Massachusetts.

Kay, A 1977. Microelectronics and the Personal Computer. Scientific American,

Vol. 237, No. 3, pp. 230-244.

Kirk, F. 1973. Total System Development for Information Systems. John Wiley & Sons,

Inc., New York.

Laurel, B. Editor. 1990. The Art of Human-Computer Interface Design. Addison-Wesley

Publishing Company, Reading, Massachusetts.

Marcus, A 1992. Graphic Design for Electronic Documents and User Interfaces. ACM

Press, New York.

Microsoft Corporation. 1993. Micro Soft Visual Basic, Programming System for

Windows, Version 3.0. MicroSoft Corporation, Redmond, Washington.

Norman, D. and Draper, S. Editors. 1986. User Centered System Design: New

Perspectives of Human-Computer Interaction. Lawrence Erlbaum Associates,

Hillsdale, New Jersey.

Peterson, G. 1987. Object-Oriented Computing, Volume 1: Concepts. Computer Society

Press of the IEEE, Washington, District of Columbia.

Peterson, G. 1987. Object-Oriented Computing, Volume 2: Implementations. Computer

Society Press of the IEEE, Washington, District of Columbia.

Pfleeger, S. 1991. Software Engineering, The Production of Quality Software, Second

Edition. Macmillan Publishing Company, New York.

Rehe, R. 1974. Typography: How to Make It Most Legible. Design Research

International, Carmel, Indiana.

Rosenberg, D. 1995. A Unified Object Modeling Approach -- Integrating Jacobson,

Rumbaugh, and Booch Methods. ICONIX Software Engineering, Inc., Santa

Monica, California, http://www.iconixsw.com/iconix/Spec Sheets/UnifiedOM.htrnl.

Rumbaugh, J., et al. 1991. Object-Oriented Modeling and Design. Prentice Hall,

Englewood Cliffs, New Jersey.

Rumbaugh, J. 1994. Getting Started, Using Use Cases to Capture Requirements. Journal

of Object-Oriented Programming, Vol. 7, No. 5, pp. 8 - 23.

Schmidt, N. 1996. Personal communication. North Dakota Department of Transportation,

Bismarck, March 1996.

Shneiderman, B. 1992. Designing the User Interface, Strategies for Effective Human

Computer Interaction.' Addison-Wesley Publishing Company, Reading,

Massachusetts.

Sommerville, I. 1992. Software Engineering, Fourth Edition. Addison-Wesley Publishing

Company, Reading, Massachusetts.

Tolliver, D. 1996. Personal communication. Upper Great Plains Transportation Institute

(UGPTI). North Dakota State University, Fargo, March 1996.

131

http://www.iconixsw.com/iconix/Spec

United States Department ofTranspo1tation. 1993. A Summary of the Intermodal Surface

Transportation Efficiency Act. Government Publications Office: 1993 0-347-721

QL 3, Washington, District of Columbia.

United States Department of Transportation, Federal Highway Administration. 1993.

Intermodal Surface Transportation Efficiency 199_1: Selected Fact Sheet.

Washington, District of Columbia.

United States Department of Transportation, Federal Highway Administration. 1993. 23

CFR Part 500, et al. Management and Systems; Proposed Rule. Washington, D.C.

Upper Great Plains Transportation Institute (UGPTI). 1995. North Dakota Intermodal

Management System Phase II Report. North Dakota State University, Fargo.

Wilkinson, N. 1995. Object Analysis, CRC Cards as Input to a Formal Methodology.

Software Development, Vol. 3, No. 11, pp. 45-55.

Yourdon, E. 1979. Classics in Software Engineering. YOURDON Press, New York.

132

APPENDIX A

IMS BACKGROUND SURVEYS

133

IMS Actor Identification and Priority Specification

Note: An actor is a user of the IMS or an entity interacting with the IMS.

System Context.·HUMAN ACTORS

These people have been identified as users of the IMS. Please indicate whether they are primary,
direct users of the system or secondary, occasional or system-support users? Also, please rank them
on a scale of 1 to 9 with I being the most important, most direct user.

Planning Division Primary User Secondary User Priority
Division Head 121 6□
Transportation Planners 121 1□
Traffic Operations 4□ □
Mapping 121 2□
Rail Program 121 3□

Other Divisions:
Operations 7□
Program&Proj. Dev. 8□
Secondary Roads 9□

Upper Management 5□

System Context:OTHER SYSTEM ACTORS

These systems have been identified as users of the IMS or as systems interacting with the IMS.
Please indicate whether they are primary, direct users of the system or secondary, occasional or
system-support users? Also, please rank them on a scale of I to 4 with I being the most important,
most direct user.

Primary User Secondary User Priority
Pavement Management System 121 2 1-□
GIS System 121 1□
Transportation Data Systems 121 3□
Traffic Operations Systems 121 4□

134

IMS Transportation Planner Use Case Specification

Note: A use case, as described by Jacobson (1995), is a sequence of transactions in a system whose
task is to yield a measurable value to an individual actor of the system. This document, by recording
how transportation planners will use the IMS, what would they want the system to do and what
would they get back from the system, will be used to develop use cases for the transportation planner.

The AMS approach of four levels of use cases is followed with the exclusion for the last use
case scenario, the abstract case, which is considered elsewhere.

High Level Use Case

A high level use case is one describing broad or major system behaviors. Previous discussion
and reports suggest that the IMS may contain these major system activities:

Decision Support: The IMS would be used for direct decision making. The IMS becomes an
active part of decision processes and decisions are made based directly on the IMS.

Planning Information: The IMS provides infonnation for planning activities and becomes
part of the planning context.

Information Service: The IMS becomes a general repository of information and provides
query and general infonnation services.

Reports: IMS reports become a part of work activities and are used for other information
based activities.

These definitions apply to the first question.

What will be your major uses of the IMS?
0 Decision Support
0 Planning Infonnation
0 Information Service
0 Reports
0 Other

What high level functionality will you use in the IMS?
0 Information Query System
0 Data storage and retrieval
0 Performance Measure and Display
0 Report generation
0 Decision Support/Modeling
0 Other (Please list) _____________

135

I

Expanded Use Cases

An expanded use case elaborates and expands on the high level use cases.

What functionality do you want from the Infonnation Query System?
0 Standardized (use existing Xbase or other database query system) user

interface
0 Custom-built query user interface
0 Print query result
0 Store queries
0 Predefined queries
0 Multiple database queries
0 Export query or query result in specialized record fonnat

Possible fomiats:
0 Microsoft Word
0 WordPerfect
0 Xbase
0 MSAccess
0 Excel
0 Other ___________

0 Other (Please list) ___________

What functionality do you expect from the Performance Measure Calculation and Display?
0 Custom perfonnance measure interface
0 Graphical screen display
0 Generate report
0 Export result in specialized record fom1at

Possible fonnats:
0 MicroSoft Word
0 WordPerfect
0 Xbase
0 MSAccess
0 Excel
0 Other-----------

0 Other (Please list) ___________

What functionality do you want for Data Storage and Retrieval?
0 Multi year storage and retrieval
0 Long tenn storage
0 Security and encryption
0 Store and retrieve data in specialized record fonnats

Possible fonnats:

136

0 MicroSoft Word
0 WordPerfect
0 Xbase
0 MSAccess
0 Excel
0 Other

Storage media
Possible media:

0 Local Hard drive
0 Networked hard drive
0 CD-ROM
0 Tape
0 Excel
0 Other

r

0 Other (Please list)

What functionality do you want for Report Generation?
0 Standard reports
0 Custom-built report functionality
0 Print reports
0 Store reports/report database
0 User editing of reports
0 Report format

Possible formats:
0 MicroSoft Word
0 WordPerfect
0 Xbase
0 MSAccess
0 Excel
0 'Other ___________

0 Other (Please list) ___________

What other functionality must be included in the IMS?
0 Electronic Data Interchange
0 Fax/modem services
0 Other (Please list)

137

Detailed Use Cases: Performance Measure Calculation

What databases will you use in the IMS?
121 Coal Handling Facilities
121 Airports
121 Transit Facilities
121 Fertilizer Distribution Centers
121 Grain Elevators
121 Major Motor Carrier Tenninals
121 Sugar Beet Collection and Processing Facilities
0 Other (Please list) ___________

What perfonnance measures should be included in the IMS?

Coal Handling Facility Database:
121 Basic traffic characteristics
0 Other (Please list)

r
Airport Database:

121 Basic traffic characteristics
0 Freight/Operations Efficiency Measure
0 State Highway Location Metric
121 Scheduled air service
0 Other (Please list)

Grain Elevator Database:
121 Basic traffic characteristics
121 Modal access and share
121 Rail shipment characteristics
121 Truck shipment characteristics
121 Elevator shipping capacity and annual volume
0 Other (Please list)

138

Fertilizer Distribution Database:
0 Basic traffic characteristics
0 Car handling capacity
0 Storage capacity
0 Other (Please list)

Motor Carrier Database:
0 Basic traffic characteristics
0 Truck Type Unloading Time Metric
0 Other (Please list)

Transit Facility Database:

i
l

t
0 Basic traffic characteristics
0 Operational characteristics
0 Other (Please list)

Sugar Beet Collection and Processing Database:
0 Basic traffic characteristics
0 Other (Please list)

Storage capacity

System wide:
0 Commodity shipment routing characteristics, highway, rail and air
0 Highway structural demands by freight shippers

0 Support Pavement Management System (PMS)/fraffic Management System
(TMS)
0 Compute intermodal average daily truck trips
0 Identify commodities originated/terminated on specific highway

sections
121 Estimate intennodal facility generated truck traffic by highway

section
121 Project traffic demand with modal shift
0 Other (Please list). ___________

139

Systemwide:
Computer intem1odal facility-specific ESALS □
Facility throughput □
Facility modal access□

0 Facility/Modal transfer time
0 Service Frequency
0 Waiting Time
0 FRA Track Classification for rail access

What databases will be updated?
0 Coal Handling Facilities
0 Airports
0 Transit Facilities
0 Fertilizer Distribution Centers
0 Grain Elevators
0 Major Motor Carrier Tenninals
0 Sugar Beet Collection and Processing Facilities

System High Level Use Case

When will the IMS databases be updated?
□ Daily
0 Occasionally
□ Annually
□ Never

NDDOT Comment: Every 3-5 years.

How will these databases be updated?
□ User input
□ Outside file creation and installation
0 EDI Updated files captured by EDI process.
□ Interface to other software

Please list:

Who will update the databases?
□ User
□ System Administrator
0 Outside consultant

140

System Context and Requirements Interview

System Context:HUMAN

Which groups of people will include the IMS as a part of their work activity or as a contributor to
their work product?

Comments
Planning Division

Division Head 0
Transportation Planners 0
Transportation Data 0
Traffic Operations 0 Track counts, changes, intermodal mode shifts.
Urban Program 0
Mapping 0 Through GIS, also incorporate inventory data.
Rail Program 0 Use for updating rail program, background data.
Transit/Special Studies 0 Depend more on TMS.

Other Divisions:
Operations 0 Districts interested in specific projects.
Design 0
Bridge 0
Materials&Research 0
Program&Proj. Dev. 0 Prioritizing of district projects.
RightofWay 0
Secondary Roads 0 Limited, impact of projects on county roads.
Upper Management 0 Category added by ND DOT. Use for what if

questions, where are traffic generators.

How will the IMS contribute to the work of these groups of people? The categories are explained
below.

Planning Division
Decision Planning Information
Support Information Service Reports

Division Head 0 0 0 0
Transportation Planners 0 0 0 0
Transportation Data 0 0 0 0
Traffic Operations 0 0 0 0
Urban Program 0 0 0 0
Mapping 0 0 0 0
Rail Program 0 0 0 0
Transit/Special Studies 0 0 0 0

Other Divisions:
Operations 0 0 0 0
Design 0 0 0 0
Bridge 0 0 0 0

141

I

Materials&Research O O O 0
Program&Proj. Dev. 0 0 □ □

Right ofWay □ □ 0 0
Secondary Roads O □ 0 0

. Upper Management 0 □ 0 0
Category added by ND DOT. Use for special projects coming from upper

management. IMS will not be used directly by upper management
but used by those developing information for upper management
decisions. The IMS will support information development across
the other three categories.

Decision Support: The IMS would be used for direct decision making. The IMS becomes an
active part of decision processes and decisions are made based directly on the IMS.

Planning Information: The IMS provides information for planning activities and becomes
part of the planning conte>-1:.

Information Service: The IMS becomes a general repository of information and provides
query and general infonnation services.

Reports: IMS-generated reports become a part of work activities and are used for other
information-based activities.

What is the general computer skill level of these users? 0 Poor 0 Average O Good

System Context:COMPUTER SYSTE111S

Will the IMS be a stand-alone, networked or client-server system?
0 Stand-alone
0 Networked Data items become part ofGIS.
0 Client-server system

With what computer systems will the IMS directly interact or communicate?
0 Pavement Management System (PMS)
0 GIS System
0 Bridge Management System
0 Transportation Data Systems
0 Traffic Operations Systems
0 Mapping Systems
□ None
□ Otl1er (Please list)

What computer systems will the IMS provide or receive input/output electronic data?
0 Pavement Management System (PMS)
0 GIS System

142

□ Bridge Management System
D Transportation Data Systems
□ Traffic Operations Systems
D Mapping Systems
□ None
□ Other (Please list)

What general computer record formats must the IMS read or write?
□ MSAccess
121 dBASE
□ FoxPro
□ Lotus 1-2-3
□ Excel
□ Quattro Pro
□ Microsoft Word
121 WordPerfect
□ ASCII
□ None r
□ Other (Please list)

System Requirements

What general functionality will the IMS provide?
121 Information Que_ry System
121 Data storage and retrieval
□ Performance Measure and Display
121 Report generation
121 Decision Support/Modeling
□ Other (Please list)

What functionality is necessary for an Information Query System?
121 Standardized (use existing Xbase or other database query system) user interface
D Custom-built query user interface
121 Print query result
121 Store queries
121 Predefined queries

143

0 Multiple database queries
0 Export query or query result in specialized record format

Possible formats:
0 MicroSoft Word
0 WordPerfect
0 Xbase
0 MSAccess
0 Excel
0 Other

0 Other (Please list)

What functionality is necessary for Perfonnance Measure Calculation and Display?
0 Custom performance measure interface
0 Graphical screen display
0 Generate report
0 Export result in specialized record format

Possible formats:
0 MicroSoft Word

i
j-

0 WordPerfect
0 Xbase
0 MS Access
0 Excel
0 Other

0 Other (Please list)

What functionality is necessary for Data Storage and Retrieval?
0 Multi year storage and retrieval
0 Long term storage
0 Security and encryption
0 Store and retrieve data in specialized record formats

Possible formats:
0 Microsoft Word
0 WordPerfect
0 Xbase
0 MS Access
0 Excel
0 Other

0 Storage media
Possible media:

0 Local Hard drive

144

0 Networked hard drive
0 CD-ROM
0 Tape
0 Excel
0 Other

0 Other (Please list)

What functionality is necessary for Report Generation?
0 Standard reports
0 Custom-built report functionality
0 Print reports
0 Store reports/report database
0 User editing of reports
0 Report format

Possible fommts:
0 MicroSoft Word
0 WordPerfect
0 Xbase
0 MS Access
0 Excel
0 Other

0 Other (Please list)

What functionality is necessary for Decision Support/Modeling?
0 Optimization models
0 Network models
0 Specialized, custom-built models
0 Custom-built user interface to modeling
0 Interface to other modeling software

Other modeling software:
0 ARC/INFO
0 GAMS
0 TRAN SCAD
0 AMPL
0 Other

Other (Please list)

145

I

0

What other functionality must be included in the IMS?
0 Electronic Data Interchange
0 Fax/modem services
0 Other (Please list)

What databases should be included in the IMS?
0 Coal Handling Facilities
0 Airports
0 Transit Facilities
0 Fertilizer Distribution Centers
0 Grain Elevators
0 Major Motor Carrier Terminals
0 Sugar Beet Collection and Processing Facilities
0 Other (Please list)

What performance measures should be included in the IMS?
Coal Handling Facility Database:

0 Basic traffic characteristics
0 Other (Please list)

Airport Database:
0 Basic traffic characteristics
0 Freight/Operations Efficiency Measure
0 State Highway Location Metric
0 Scheduled air service
0 Other (Please list)

Grain Elevator Database:
0 Basic traffic characteristics
0 Modal access and share

146

l
0 Rail shipment characteristics
0 Truck shipment characteristics
0 Elevator shipping capacity and annual volume
0 Other (Please list)

Fertilizer Distribution Database:
0 Basic traffic characteristics
0 Car handling capacity
0 Storage capacity
0 Other (Please list)

Motor Carrier Database:
0 Basic traffic characteristics
0 Truck Type Unloading Time Metric
0 Other (Please list)

Transit Facility Database:
0 Basic traffic characteristics
0 Operational characteristics
0 Other (Please list)

Sugar Beet Collection and Processing Database:
0 Basic traffic characteristics
0 Other (Please list)

Storage capacity

Systemwide:
0 Commodity shipment routing characteristics, highway, rail and air
0 Highway structural demands by freight shippers
0 Support Pavement Management System (PMS)ffraffic Management System

(TMS)
0 Compute interrnodal average daily truck trips

147

0 Identify commodities originated/terminated on specific highway
sections

0 Estimate intermodal facility generated truck traffic by highway
section

0 Project traffic demand with modal shift
0 Other (Please list).

0 Computer intermodal facility-specific ESALS
0 Facility throughput
0 Facility modal access
0 Facility/Modal transfer time
0 Service Frequency
0 Waiting Time
0 FRA Track Classification for rail access

IWhat databases will be used together?
Grain and Fertilizer, check out others as we go along. i

What databases will be used most often? I
Grain Elevators, Sugar Beet Processing !

What databases will be updated?
0 Coal Handling Facilities
0 Airports
0 Transit Facilities
0 Fertilizer Distribution Centers
0 Grain Elevators
0 Major Motor Carrier Te1111inals
0 Sugar Beet Collection and Processing Facilities

When will these databases be updated?
0 Daily
0 Occasionally
0 Annually
0 Never

NDDOT Comment: Every 3-5 years.

148

How will these databases be updated?
□ User input
□ Outside file creation and installation
0 EDI Updated files captured by EDI process.
□ Interface to other software

Please list:

Who will update the databases?
□ User
□ System Administrator
0 Outside consultant

149

-i

1

APPENDIXB

IMS COMPUTER USE SURVEY

151

lntermoda/ Transportation Management System
Computer Use Sutvey

SURVEY RESULTS

37 Surveys were sent out. 30 responses were received. (81 %)

Organization: Department of Transportation, Planning Division

Directions: Please answer the following questions carefully. Please circle your answer
or fill in the blank.

1. What kind of computer do you use? Results % of Respondents
a. PC 30 100
b. Work Station 2 7
c. Mainframe 4 14

2. How many years have you used a computer?
a. 1 3 10
b. 3 3 10
C. 5 5 17
d. more than 5 19 63

3, What operating system do you use?
a. DOS 22 76
b. Windows 15 50
C. OS/2 1 3
d. Other 4 14

4. Approximately how many hours a week do you use your computer?
a. 10 or less 6 20
b. 10- 20 12 40
C. over20 12 40

152

5. Please circle the input devices do you use.

Keyboard
Mouse
Pen
Trackball
Other

30
21

1
0
3

100
70

3
0

10

6. Are you on a network?
Yes
No

5
25

15
85

7. Please circle the computer software programs you use or are familiar with.

Word processor
Database
Statistical package
Spreadsheet
Graphics programs
Application Generators
Programming Languages
CAD
Decision Support Systems
Desktop Publishing
Multi-Media
Networking

8. Do you use software on a network?
Yes
No

23 76
22 73

2 6
18 60
13 43

1 3
1 3

10 33
1 3
3 10
0 0
1 3

4 13
26 87

9. Do you develop computer programs or information systems?
Yes 3 10
No 25 83

10. Have you used a Graphical User Interface such as Windows?
Yes 17
No 13

55
45

153
I_

11. Please list the Graphical User Interfaces you have used.

Windows
Autocad
ACAD
Freelance
Word perfect for Windows
OS/2
Mouse Pointer
Tranplan
Dosshell

11
1
1
1
1
1
1
1
1

33
3
3
3
3
3
3
3
3

12. Do you use a Graphical User Interface in your work?
Yes 16 53(60)
No 12 40(40)

13. If you use Graphical User Interfaces, how helpful are they?
a. a little 1 3(6)
b. somewhat 3 10(19) t
C. a lot 12 40(75)

14. Please circle which GUI features you are familiar with.)

!.
pull down menu 16 53
pop up menu 10 33
dialog box 8 27
scroll bar 7 23
menu bar 17 57
list box 7 23
window 17 57
icon 16 53
message box 8 27
input box 7 23
command button 12 40
mouse pointer 16 53

154

t

The following questions are used to learn how you use information and data in
your work.

15. What type of information do you use in your work?

Raw data 26 87
Statistics 14 47
Written Reports 19 63
Graphs 18 60
Charts 13 43
Maps 19 63

16. In your work, do you read and use information directly from a computer screen?
Yes 24 80
No 6 20

17. Approximately how many hours a week do you use your computer to create or
retrieve information?

a. 10 or less 11 38(38)
b. 10-20 12 40(41)
C. over20 6 20(21)

18. Do you use any computerized information systems like the Pavement
Management
System?

Yes 12 40
No 18 60

19. Do you create or analyze data for others to use in their jobs?
Yes 14 47(48)
No 15 50(52)

20. Please describe the type of information you find most useful in your work.

Traffic Count
Accident Data
Transportation Trend Data
Work Schedules
HPMS
RIMS

155

Budget Reports
Personnel Information
Man hours per job
Graphical info such as maps tied to databases
All roadway info,r/w,utilities,traffic
Mile by mile Raw Data
Pavement Management Information.traffic data.truck data
Pavement Performance Data, Project Data
Data
Graphs
Transportation planning related
I do almost strictly word processing
Economic factors & trends affecting local gov't.
The storage and retrieval of all my work,data, and information in my PC
Existing roadway data

21. Please circle all the ways you use information in your work?

Analysis 22 73
Decision-making 20 66
Writing reports 20 66
Reports for presentations 22 73
Making charts 17 57

22. Do you work as part of a team that directly uses the same information?
Yes 23 77
No 7 23

23. Do you think computerized information systems useful?
Yes 30 100
No 0 0

156

I

!

24. How much experience do you have with lntermodal Transportation?
a. none 7 23(25)

b. a little 11 37(39)

C. some 9 30(30)

d. a lot 1 3(4)

25. Do you need to consider lntermodal Transportation in your job?
a. None 3 10(12)

b. a little 6 20(23)
C. some 14 47(54)

a lot 3 10(12)d.

26. Does lntermodal Transportation affect your department?
a. none 0 0

b. a little 0 0

C. some 10 33(37)

d. a lot 17 57(63)

27. Will lntermodal Transportation become more or less important?
More 26 87(100)

0Less 0

Comments:

lntermodal transportation needs to be defined.
I see the use of laptops(notebook) computers becoming more and more
the wave of the future. Especially for traveling and documenting
meetings, field trips, and public hearings.
lntermodal information is often unavailable for use in analysis of highway
improvements.
Truck, train, and pipeline commodity movement and the interface between
the modes should be considered in the design of highways as well as the
other modes.
Currently work with Metro Planning Organizations and smaller urban
areas: To develop transportation plans(..?.. 20 years). Also special area
studies and individual area studies.
Yes because of the requirements of !STEA.
I believe our transportation systems are just fine, or at least as good as

157

any in the Midwest. A lot of the urgently expressed needs are somewhat
overdramatized. Considering our pop.,land area, tax base, etc. we're
doing all-right in N.Dak.
I basically work in a supervisory/administrative role whereby I direct
development of highway improvement projects in cities. This gets into
intermodal issues. I also provide assistance/admin to Metropolitan
Planning Organizations (IE FMCOG) & the urban areas of North Dakota in
areas of urban planning, transit planning, & bicycle/pedestrian planning.
Although my staff use data for analysis on the PC, I do very little data
analysis myself. Data includes: VMT(vehicle miles traveled) on a street
system, ADT(average daily traffic), accident data & stats, PMS data, as
well as social/economic data for use in developing traffic projections.

r

158

	Structure Bookmarks
	■ None □ A tittle II Some ■ A Lot I

Accessibility Report

		Filename:

		User Centered Systems Analysis_REM.pdf

		Report created by:

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov

		Organization:

		DOT, NTL

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 26

		Failed: 4

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

